Currently Viewing Posts in Featured

The Cumulative Effect of Multiple Mycotoxins

Unlocking the Mysteries of Mycotoxin Levels in Feeds 

One of history’s enduring quotes originates from the philosopher Aristotle, who articulated, “The whole is greater than the sum of its parts.” Today, we apply this wisdom to agriculture, specifically in understanding the cumulative effect of mycotoxins on livestock health and productivity. 

We explore the effect of mycotoxin levels in livestock feeds and the significance of multiple mycotoxins in tandem, uncovering the holistic impact of these toxins on livestock well-being and performance. Also, we investigate historical research documenting threshold levels of concern for individual mycotoxins across various animal species. However, there is a notable gap in research exploring the combined effects of multiple different mycotoxins present in livestock diets.  

The Cumulative Effect of Stressors 

Producers want to understand the “safe” threshold of mycotoxin levels in livestock feed and consult various available guides. However, the speed at which mycotoxins become toxic is often contingent upon several factors, including environmental conditions, genetics, nutritional factors, and other stressors such as disease prevalence, heat, or overcrowding. Moreover, the presence of other mycotoxins in the diet can exacerbate these effects. These factors collectively influence the clinical expression of mycotoxicosis, adversely affecting weight gain, feed efficiency, production, and reproductive capabilities. 

Under most normal production conditions, more than one mycotoxin is present in an animal’s ration. Toxin-producing fungi often generate more than one mycotoxin. This process can contaminate a single feed ingredient, or several different toxins can be blended into a diet from several different ingredients that make up finished feed. Furthermore, animals can encounter toxins from other sources, causing additional stress. These would include endo and exotoxins from bacteria, viral toxins, or toxins from the environment, both synthetic and natural. 

Mycotoxin Interactions  

Most controlled research uses dietary mycotoxin concentrations much higher than those shown to affect field conditions. The reason for using these higher concentrations is to achieve a significant challenge response in research conditions. As a result, the combined effects of multiple dietary mycotoxins in research may sometimes appear less than cumulative. This discrepancy could arise because of the severity of the negative effects induced by each mycotoxin, preventing the typical response from the second mycotoxin from occurring simultaneously in the animal. 

The cumulative effects of multiple mycotoxins can manifest in various ways:  

  • Additive effects, where each mycotoxin independently decreases performance by the same amount as it would if present in the diet alone;  
  • Synergistic effects, where mycotoxins collaborate to exacerbate negative outcomes beyond their individual impacts; and rarely,  
  • Antagonistic effects, where one mycotoxin diminishes the activity of another, although this is not to be expected as supported by various research.  

In a 2003 mycotoxin report by the Council for Agricultural Science and Technology there was a review of 33 papers where researchers reported the effects of multiple mycotoxins fed concurrently throughout production. In this review, only one was believed to have had an antagonistic response.  

An interesting occurrence, often not discussed, occurs when multiple mycotoxins demonstrate potentiative effects. According to the CAST report, “Potentiative effects occur when one mycotoxin does not cause a toxic effect on a certain organ or system, but then fed with another mycotoxin it makes the latter much more toxic.”   

What requires consideration and management is the overall toxin exposure. Achieving control over the disease is not dependent on attaining 100% control of any given toxin. Instead, it can be achieved by reducing a portion of the toxin exposure so that the total exposure is controlled. 

Figure 1. Control of toxicosis is not dependent on 100% control of any given toxin but can be attained by reduction of part of the toxin exposure such that the total exposure is dropped below the point that production is economically impacted. 

Figure 2. Multiple sources of stress in an animal’s life will change the tolerance level it has for toxins at different times. If you can decrease the toxin concentration that is entering the body from the gastrointestinal tract you can minimize the amount of damage it can do. 

 The animal’s ability to tolerate total mycotoxins can fluctuate over time due to varying levels of additional stressors impacting the animal. 

These stressors encompass a wide range of factors including disease challenges, rapid growth, onset of egg production, weaning, pregnancy or nursing, exposure to other mycotoxins, or toxins in the diet, among others. In addition, the total concentration of mycotoxins in the diet will also change over time. Clinical disease becomes evident when the total mycotoxin level surpasses the animal’s tolerance threshold. To optimize performance, it is essential to both minimize animal stress and mitigate toxin exposure. 

 Calibrin®-Z:  The Broadest Spectrum for Biotoxin Control 

Calibrin®-Z, available in select international markets, is proven to adsorb a broad range of bacterial and fungal toxins that negatively impact livestock. It is supported by years of research at universities, research organizations, and on-farm use around the world.    

 

Calibrin-Z is not a traditional clay mineral. Amlan® International sources this unique, natural mineral in the U.S. and it is composed of calcium montmorillonite with high-capacity opal-lepispheres. It is a type of phyllosilicate constructed of nano-scale layers, providing an extensive surface area. Through proprietary thermal processing, Calibrin-Z is optimized to effectively bind the broadest range of biotoxins, including fungal and bacterial toxins. Selectively sourced for its exceptional binding capability, this mineral targets both polar toxins like aflatoxin and significant non-polar toxins such as zearalenone.  

Calibrin-Z: A Multiple Toxin Solution 

In the last year, numerous research projects have been undertaken to challenge and document the effectiveness of Calibrin-Z in mitigating the effects of multiple mycotoxins in the feed.   

These studies encompass a variety of approaches, ranging from a side-by-side comparison of high levels of a singular toxin, a combination of multiple toxins at lower levels, and a study that evaluated the effects of low levels of multiple toxins (all below a normal company rejection level for each toxin). 

In the first study, a comparison was made between broiler chickens fed a higher concentration of T-2 toxin (2 ppm) and broilers fed a combination of multiple mycotoxins consisting of T-2 (1 ppm), Aflatoxin (1.8 ppm), and Fumonisin (50 ppm). The treatment groups in the trial included an unchallenged control group, a challenged control group for both the singular toxin challenge and the multiple toxin challenge, and challenge groups with Calibrin-Z included in the diet for both the single toxin and the multiple toxin challenges. Due to the high concentrations of mycotoxins in this study, Calibrin-Z was added at an inclusion rate of 0.5%. In all traits measured (BW, FCR, Relative Liver Weight, and Villus Height) the negative effect on performance was greater for the multiple mycotoxin challenge as opposed to the higher single mycotoxin challenge. When Calibrin-Z was incorporated into the diet, the result was a statistically significant improvement in performance vs. the challenged control for body weight (63g), relative liver weight, and villus height, and a numerically significant (6 points) improvement in FCR under multiple mycotoxin challenge.. For the single high mycotoxin challenge, the birds fed Calibrin-Z improved in every KPI with BW and FCR performing even numerically better than the unchallenged control. 

  

   

While it is anticipated to observe performance improvements when employing a high-quality toxin binder like Calibrin-Z, in diets containing elevated levels of both single and multiple mycotoxins, the initial query raised in this article remains pertinent: When individual toxin levels are exceedingly low, can they still adversely impact performance? And if so, can a toxin binder improve performance with low levels of toxins enough to offset the cost of inclusion in the diet? 

To test this, a replicated pen study was run that did not spike the broiler diet with mycotoxins, but rather tested the ingredients to document the level of mycotoxins naturally present. The corn was found to contain naturally occurring Fumonisin, T-2, and DON at levels significantly below what is documented as “Levels of Concern” in poultry. 

 The trial contained 8 replicate pens of 23 male broilers for each treatment and compared a control group to a group fed the same diet with an inclusion of 1 KG/MT Calibrin-Z.  As demonstrated in the table below, even when individual mycotoxin levels in the feed are extremely low, there is a synergistic effect that adversely impacts economically significant KPIs. However, incorporating a standard inclusion of Calibrin-Z into the feed improved performance. 

While the numerical improvements of approximately two days of growth (60 g/Day), a 6-point adjusted FCR, and a 1.14% increase in livability are certainly notable, what is the economic impact on live cost? If we assume a standard feed cost of $350/ton, which is common with the current grain prices, and then include the cost of the standard 1 kg/MT dosage of Calibrin-Z, these differences in KPI performance translate to a live cost advantage of just over $280,000 annually for every 100,000 broilers processed per week. Therefore, for a 1 million broiler per week operation producing 2.75 kg (approximately 6 lb.) broilers, this would result in a live cost savings based on enhanced performance of approximately $2.8 million annually. 

 

As previously mentioned, much of the research, including the initial study cited, is conducted with mycotoxin levels significantly elevated. While this approach effectively demonstrates the negative impact of mycotoxins on performance and highlights the benefits of using a toxin binder like Calibrin-Z, it does not accurately reflect the levels typically encountered in real-world scenarios. Consequently, many producers opt to forego a toxin binder in their day-to-day feed formulations and only consider adding a binder during specific times of year when higher mycotoxin levels are anticipated. 

However, this second study clearly demonstrates the synergistic interaction between extremely low levels that are under the “acceptable” threshold of mycotoxins and the significant economic advantages of incorporating a proven toxin binder, like Calibrin-Z, into the diet to enhance a producer’s bottom line.  

To start a trial, visit Amlan.com 

© 2024 Amlan International. All Rights Reserved. Product availability may vary by country, associated claims do not constitute medical claims and may differ based on government requirements. 

Dr. Robin Jarquin Speaks with El sitio Avícola for an Interview on Sustainable Production Effeciency

We recently conducted a highly informative Q&A session with El Sitio Avícola. Robin Jarquin, Amlan’s Director of Sales for Latin America, discussed pivotal strategies for optimizing poultry gut health with Calibrin-Z®, Varium®, and Phylox®. Want to learn more about sustainable solutions and productivity enhancement? Click to read more

Calibrin®-A Safeguards Ducklings and Broiler Chicks Against Aflatoxin

Young animals (e.g., ducklings and broiler chicks) are particularly susceptible to the harmful and production-limiting effects of aflatoxins. Therefore, it’s important for producers to have preventative tactics in place to reduce the risk of aflatoxicosis in their flock. Peer-reviewed studies have shown that an all-natural mineral-based feed additive, Calibrin®-A (available in select international markets), can help ameliorate the effects of aflatoxin on ducklings and broiler chicks when fed from hatch.

Biochemical and Biological Aflatoxin Effects

Aflatoxins are produced by the fungi Aspergillus flavus and A. parasiticus. Multiple metabolite forms are produced by Aspergillus, including B1, B2, G1 and G2, with aflatoxin B1 (AFB1) the most common and potent cause of aflatoxicosis. In the right environment, typically hot and humid conditions, aflatoxins can be produced in Aspergillus-contaminated feed.

Subclinical cases of aflatoxicosis generally cause reduced weight gain and productivity, while more severe cases can cause liver damage, immunosuppressive effects, gastrointestinal dysfunction and mortality. Various biological and biochemical parameters can be measured to determine the effects aflatoxin has on the body, including growth performance, intestinal morphology, serum biochemistry and oxidative stress.

A Natural Aflatoxin Binder

These same biological and biochemical parameters can also be used to assess the efficacy of feed additives, like all-natural Calibrin-A, in protecting animals against the harmful and profit-limiting effect of aflatoxins. Calibrin-A rapidly adsorbs polar mycotoxins like aflatoxin, ergotamine and ergovaline, due to a combination of its natural properties and Amlan’s proprietary thermal processing technique. By binding aflatoxin in the gut, Calibrin-A prevents aflatoxin from being absorbed into the bloodstream and exerting its toxic effects.

The effectiveness of Calibrin-A in protecting young birds, and therefore producers’ profits, has been reported in a number of peer-reviewed journal articles and scientific conference presentations, three of which are described below.

Calibrin-A Alleviates Aflatoxin Effects in Ducklings

Two papers, one published in the Journal of Applied Poultry Research and the other in Poultry Science, reported the biological and biochemical effects of aflatoxin (AFB1, from naturally contaminated corn) on ducklings from 1 to 21 days of age. The first report looked at four diets (with and without aflatoxin, with and without Calibrin-A) and the effects of these diets on hematology and serum biochemistry.1 To look at the effects of aflatoxin on growth performance and liver and intestinal health, the second report used the results from the first study, as well as four additional treatments that used two lower concentrations of aflatoxin (eight treatments total, Table 1). 2

Table 1: Aflatoxin concentration of “clean” and naturally contaminated corn-based diets fed to ducklings with or without Calibrin-A.

Two control diets containing “clean” corn, with and without 0.1% Calibrin-A, were used in the experiment to determine if Calibrin-A had any negative effects on growth performance. The control diets did have detectable levels of aflatoxin; however, they were considered “clean” because these concentrations were below the tolerable level of aflatoxin contamination (20 ug/kg) set by some regulators. Despite careful ingredient selection, the control diets did have aflatoxin contamination, which demonstrates the importance of having a risk-management strategy in place to prevent mycotoxin-related health and performance issues in your flock.

Feeding 0.1% Calibrin-A in the clean diet did not change the feed conversion ratio with values of 1.59 and 1.57 for 0 and 0.1% Calibrin-A, respectively.1 This indicates that adding Calibrin-A to the ration did not interfere with the digestibility and utilization of nutrients needed for normal growth.1

The high aflatoxin diet had lower average daily gain (ADG) compared to the Calibrin-A clean diet and greater mortality compared to negative control clean diet.2 Increasing the amount of contaminated corn had a linear, quadratic or both effect on reducing ADG and increasing mortality. However, Calibrin-A decreased mortality irrespective of the contaminated-corn concentration, and the variability in growth that significantly increased at the 50 and 100% aflatoxin level in the second report was also alleviated by the addition of Calibrin-A.2

As expected, aflatoxin caused intestinal damage, indicated by the decrease in the villus-crypt ratio as aflatoxin concentration increased in the diet.2 It’s likely this caused interference with digestion and absorption of nutrients and contributed to the decreased average daily gain and bodyweight in ducklings fed the highest concentration of aflatoxin compared to the Calibrin-A control.1 Calibrin-A had a positive effect in the intestine by improving villus height and villus-crypt ratio in the duodenum and jejunum versus diets with no Calibrin-A.2

Analysis of liver enzymes indicated that serious liver damage also occurred in the high aflatoxin group. Creatine kinase, alanine transaminase and aspartate transaminase significantly decreased and alkaline phosphatase activity increased compared to the negative control clean diet, but the addition of Calibrin-A to the high aflatoxin diet neutralized these effects.1 All serum metabolites measured decreased in the high aflatoxin diet compared to clean diet; however, Calibrin-A improved serum metabolite concentrations.1

In the high aflatoxin group compared to the negative control clean diet, hepatoxicity was indicated by significantly decreased antioxidant defense systems — serum superoxide dismutase activity and serum and liver glutathione peroxidase activities — but they were improved with the addition of Calibrin-A to the diet.1 Serum and liver malondialdehyde concentration (an oxidative stress and liver damage marker) was also increased in the high aflatoxin group compared to the clean control, but Calibrin-A was able to prevent the increase.1

In these studies, feeding 0.1% Calibrin-A alleviated the aflatoxin-induced effects of reduced growth performance, increased mortality, liver damage, increased oxidative stress and impaired intestinal morphology of ducklings.

Calibrin-A Improves Aflatoxin-Challenged Broiler Performance

In a 21-day study at the University of Missouri, 320 day-old male broiler chicks (eight treatments, with eight replicate pens of five chicks per treatment) were fed diets with and without various concentrations of aflatoxin and Calibrin-A in the diet (Table 2).3

Table 2: Broiler chicks were assigned to one of eight treatments, with or without aflatoxin and with or without Calibrin-A.

Broilers challenged with aflatoxin (2 or 3 ppm) and fed either 0.25 or 0.5% Calibrin-A, had significantly greater body weight gain and feed intake compared to the aflatoxin-challenged controls (2 or 3 ppm aflatoxin; P < 0.05; Figure 1). At 2 ppm aflatoxin, both Calibrin-A concentrations also significantly reduced relative liver weight compared to the 2 ppm aflatoxin control (P < 0.05). No other groups were significantly different, although at 3 ppm aflatoxin, both Calibrin-A groups were numerically lower than the aflatoxin control (Figure 2).

This study confirmed that the addition of 0.5% Calibrin-A to the ration did not negatively affect broiler performance. Feed intake, body weight gain and feed conversion were not different between the negative control and 0.5% Calibrin-A, and neither were serum albumin, globulin, total protein, calcium or glucose concentrations.

 

Figure 1: Calibrin-A included at 0.25 and 0.5% had significantly greater body weight gain and feed intake compared to the mycotoxin control fed at either 2 ppm or 3 ppm (P < 0.05).

Figure 2: At 2 ppm aflatoxin, both Calibrin-A concentrations significantly reduced relative liver weight compared to the positive control (P < 0.05).

 

These studies show that Calibrin-A is a safe and effective solution for managing the toxic effects of aflatoxin in ducklings and broiler chicks — without interfering with nutrient utilization required for normal growth. For more details about these studies or to learn more about Calibrin-A, contact your local Amlan sales representative.

 

References

  1. Li, Y, Liu YH, Yang ZB, Wan XL and Chi F. The efficiency of clay enterosorbent to ameliorate the toxicity of aflatoxin B1 from contaminated corn (Zea mays) on hematology, serum biochemistry, and oxidative stress in ducklings. J Appl Poult Res. 2012; 21:806–815.
  2. Wan, XL, Yang ZB, Yang WR, Jiang SZ, Zhang GG, Johnston SL and Chi F. Toxicity of increasing aflatoxin B1 concentrations from contaminated corn with or without clay adsorbent supplementation in ducklings. Poult Sci. 2013; 92:1244–1253.
  3. Ledoux DR, Rottinghaus GE, Bermudez, AJ and Broomhead, J. Efficacy of the adsorbent Calibrin-A in ameliorating the toxic effects of aflatoxin in broiler chicks. Presented at International Poultry Scientific Forum, Atlanta, GA.

 

Calibrin®-Z Is Not Your Typical Biotoxin Binder

For decades, clays have been used globally as feed additives to help with feed flowability and pellet binding (e.g., Flo-Fre™ and Pel-Unite™). More recently, some international markets have also recognized the ability of mineral-based products to bind biotoxins in the intestinal tract of animals. However, there is a misconception in the industry that all clay minerals are the same and have the same biotoxin-binding abilities. The truth is that the natural properties of the minerals and how they’re processed have a significant impact on their effectiveness as a biotoxin enterosorbent.

Calibrin®-Z (available in select international markets) is an example of a mineral-based product that’s not your typical biotoxin-binding feed additive. Many mineral-based products focus on binding only one biotoxin (e.g., aflatoxin). However, the natural composition of Calibrin-Z and the proprietary processing technique that’s used to modify its surface chemistry allow it to bind a broad spectrum of biotoxins, including bacterial exotoxins and endotoxins and polar and nonpolar mycotoxins.

A Natural, Synergistic Mineral Mix

Calibrin-Z is a calcium bentonite that is primarily composed of two minerals — calcium montmorillonite and opal (amorphous silica lepispheres). Each of these minerals has specific physical properties and it’s how they’re naturally mixed together that gives Calibrin-Z part of its distinctive enterosorbent abilities (Figure 1).

Figure 1: A representation of the calcium montmorillonite layers intertwined with opal lepispheres.

The interwoven, naturally occurring calcium montmorillonite and opal lepispheres of Calibrin-Z create more biotoxin-binding opportunities than if they were used alone. It’s what makes the intimately mixed mineralogic nature of Calibrin-Z difficult to duplicate — the minerals grew and altered their properties for over 60 million years.

An Interconnected Pore Network

Calibrin-Z is very porous — it’s about 50 percent pore space consisting of nano, micro, meso and macro pore sizes. Opal lepispheres have their own micro pores and help to open up spaces within the calcium montmorillonite structure because they’re naturally formed amongst the calcium montmorillonite. This natural mixture of minerals gives Calibrin-Z a very low bulk density, high porosity and an extensive surface area of around 450,000 m2/kg — an area equivalent to around 50 average-sized soccer stadiums. A phenomenal amount of chemistry can occur on this expansive surface area.

In order for Calibrin-Z to adsorb biotoxins that are in intestinal fluid, the fluid must first be absorbed into its pores. The pores of Calibrin-Z are an interconnected network that allows intestinal fluid to enter them, where the biotoxins can then interact or bind with the pore surface. Unlike other clays, the porosity of Calibrin-Z creates an open construct on a microscopic scale and a more inviting place for intestinal fluids to be absorbed into.

A Hydrophobic Surface Improves Biotoxin Binding

When the calcium bentonite in Calibrin-Z is mined, the capillaries and channels of its pores are naturally filled with water. Our proprietary thermal processing technique removes most of this water and also modifies the surface of the minerals to allow the pore surfaces to become more hydrophobic (Figure 2). This is a significant point of difference for Calibrin-Z because certain biotoxins (e.g., nonpolar mycotoxins and bacterial toxins) have a greater affinity for hydrophobic surfaces than hydrophilic surfaces. Other mineral-based products that are more hydrophilic than hydrophobic won’t be able to adsorb the broad spectrum of bacterial and fungal toxins that Calibrin-Z can bind.

Figure 2: Thermal processing removes water and changes the surface chemistry to create biotoxin-binding Calibrin-Z.

Safe, Irreversible Thermal Processing

Our proprietary thermal processing heats the surface of Calibrin-Z, changing its surface chemistry. These thermochemical changes are irreversible — they can’t be undone even after being exposed to the harsh environment of the animal’s gut.

Some companies activate the surface of their minerals with harsh chemicals instead of heat. Chemical activation of minerals does not create an irreversible bond, so theoretically these chemicals could be stripped off in the animal’s gut. This is important because the in vitro biotoxin-binding efficacy of a mineral-based product activated with chemicals may not be replicated in the real world. In the animal’s gut, the minerals are exposed to strong acids, enzymes and other substances that can change their properties and biotoxin enterosorbent abilities. Thermal processing is a safer, ecofriendly alternative to chemical activation of minerals that is permanent.

Vertical Integration Ensures Consistency

Quality and reliability of supply is another differentiator for Calibrin-Z. Amlan is the animal health business of Oil-Dri® Corporation of America, a leading global manufacturer and marketer of sorbent minerals. Vertical integration allows Oil-Dri and Amlan to control every step of the mineral production process to reliably deliver safe, high-quality and efficacious mineral-based products.

If needed, we can trace the minerals in our products from the feed bag, through the supply chain, through the processing chain in our plants back to where we mined the calcium bentonite. This includes the original core drill hole that was used to extract and pre-qualify the raw material to ensure it met the physical and absorptive quality profile. We mine our calcium bentonite from a single mine and from a specific location within our mine that has hundreds of years of reserves — giving our customers confidence in the availability, consistency, quality and efficacy of our minerals every time they buy a new batch of products.

 

The biotoxin-binding abilities of Calibrin-Z are quite different compared to most other calcium bentonite-based biotoxin binders. That’s why it’s important to look beyond the ingredient list on the feed bag and review the in vivo research that proves a feed additive can improve the intestinal health and performance of production animals. To read our in vivo Calibrin-Z research, visit our Research page or contact your local Amlan sales representative.

 

From Mine to Feed: Complete Traceability of Our Clay Mineral

Our mine to market approach offers a distinct advantage for our customers who value ingredient consistency and traceability. Because we’re vertically integrated, we oversee the entire production process. We extract the mineral, thermally process it, create and package multiple mineral-based products and distribute them all over the world. That’s the Amlan difference.

 

 

To learn more about the unique properties of our mineral and why all clay minerals aren’t the same, visit our mineral technology page. For more information on the traceability and reliability of our mineral, contact your local Amlan representative.

Key Necrotic Enteritis Virulence Factors: Alpha-Toxin and NetB toxin

Necrotic enteritis is a common — and costly — infectious disease of poultry caused by the gram-positive bacteria Clostridium perfringens. The virulence of C. perfringens is mostly related to its ability to produce potent toxins. Two exotoxins in particular — alpha-toxin and necrotic enteritis B-like toxin (NetB) — play critical roles in necrotic enteritis development in poultry.

Necrotic Enteritis Origins

The anaerobic, spore-forming C. perfringens is found throughout the poultry environment and is also part of the normal bird microbiota. Necrotic enteritis occurs when there is an overgrowth of C. perfringens caused by predisposing conditions, such as diet changes, immune status or intestinal pathophysiology. High mortality rates are characteristic of the clinical form of necrotic enteritis, whereas subclinical disease causes reduced weight gain and higher feed conversion ratio (FCR). The increased FCR is due to reduced nutrient digestibility and adsorption, and the subsequent compensatory feed intake.

The Role of Exotoxins in Necrotic Enteritis

C. perfringens produces multiple exotoxins, including alpha-toxin and NetB toxin. All C. perfringens types produce alpha-toxin which is cytotoxic to endothelial cells, red blood cells, white blood cells and platelets.1 Alpha-toxin was thought to be the major toxin responsible for necrotic enteritis clinical signs; however, researchers identified an alpha-toxin-negative mutant strain that was able to induce necrotic enteritis.2 This led to the discovery that NetB was a key virulence factor of necrotic enteritis in poultry.

Quorum sensing regulates NetB production, which is initiated when C. perfringens reaches a concentration of 109 CFU/g or higher and the bird has dysbiosis or impaired intestinal function.3 In healthy birds, the intestinal epithelium and mucus layer protect internal tissues by forming a selective barrier against the contents of the intestinal lumen (the external environment). The natural barrier allows nutrients through the intestinal wall but not pathogens and their toxins. A breakdown of this defensive barrier occurs when there is an overgrowth of C. perfringens and toxin production is stimulated. NetB forms pores in cell membranes that allow electrolytes to rupture cells, causing cell death and necrotic lesions in the small intestinal mucosa.1 The damage to the intestinal wall hinders nutrient digestion and absorption and can allow toxins to enter the circulatory system.

Manage Necrotic Enteritis with Natural Mineral-Based Feed Additives

Effective management programs are important for reducing the harmful health and production effects of necrotic enteritis. However, neutralizing the toxins produced by C. perfringens can also help control necrotic enteritis. The natural mineral-based feed additives Varium®, NeutraPath® and Calibrin®-Z (all available in select international markets) can be used alone or in synergistic combination to help maintain a healthy intestinal environment and protect birds from the devastating effects of alpha-toxin and NetB toxin.

Designed specifically for poultry, patented Varium promotes bird efficiency and productivity by protecting the intestinal lining, strengthening the intestinal barrier and stimulating the intestinal immune system. Varium’s synergistic, mineral-based formulation does this by binding pathogenic bacteria and the toxins they produce, energizing intestinal epithelial cells and acting as an immunomodulator to help birds naturally combat disease.

NeutraPath helps support broiler gut health and structural integrity by reducing the intestinal load and colonization of pathogenic bacteria. NeutraPath has bacteriostatic and bactericidal properties and can also neutralize virulence factors, including the toxins produced by pathogenic bacteria and the quorum-sensing molecules used for pathogen communication.

Calibrin®-Z is a single-ingredient, all-natural biotoxin binder that helps protect the intestinal barrier against enteric disease. Calibrin-Z can bind a broad spectrum of pathogens and bacterial and fungal toxins, including C. perfringens and E. coli toxins and aflatoxin, fumonisin and zearalenone.

Natural Mineral-Based Feed Additives Bind C. perfringens-produced Toxins

were shown to effectively bind alpha-toxin and NetB toxin in vitro (Figure 1), and NeutraPath caused a four-fold reduction in unbound alpha-toxin in the cecal contents of C. perfringens-challenged broilers (Figure 2). These alpha-toxin and NetB toxin binding abilities also translated to health and performance improvements during .

Figure 1: Researchers at the United States Department of Agriculture – Agricultural Research Service (USDA-ARS) showed that Varium and Calibrin-Z were able to effectively bind alpha-toxin and NetB toxin in vitro.

Figure 2: A four-fold reduction in unbound alpha-toxin occurred in cecal contents of C. perfringens-challenged broilers fed NeutraPath compared to challenged control birds (128 total birds). Source: Southern Poultry Research, Inc., Athens, GA.

 

The C. perfringens toxins associated with the development of necrotic enteritis — alpha-toxin and NetB toxin — can have devastating effects on the health and production performance of poultry. However, the natural mineral-based feed additives Varium, NeutraPath and Calibrin-Z can help neutralize these toxins, protect the intestinal environment and improve production efficiency. To learn more about these intestinal health solutions, contact your local Amlan representative.

 

References

  1. Chi F. A Viable Adjunct or Alternative to Antibiotics: Meta-Analysis of Broiler Research Shows Natural Growth Promoter Delivers Feed Efficiency Equal to Antibiotics. Amlan International.
  2. Keyburn AL, Sheedy S, Ford M, Williamson M, Awad M, Rood J, Moore RJ. Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens. Infect Immun. 2006;74:6496-6500.
  3. Mora ZV, Macías-Rodríguez ME, Arratia-Quijada J, Gonzalez-Torres YS, Nuño K, Villarruel-López A. Clostridium perfringensas Foodborne Pathogen in Broiler Production: Pathophysiology and Potential Strategies for Controlling Necrotic Enteritis. Animals (Basel). 2020;10:1718.

 

 

NeutraPath®: Natural Pathogen Control Using Feed Ingredient Synergy

NeutraPath biology with swine in background.

The control of pathogens and disease is a recurring challenge for livestock and poultry producers, whether they use conventional or antibiotic-free production systems. Amlan is tackling the challenge of disease prevention with the development of a natural feed additive that combines multiple feed ingredients that help reduce bacterial pathogens and their toxins. NeutraPath®, a natural feed additive for all species, reduces the pathogenic bacterial load and colonization, while also improving intestinal health and structural integrity, all of which contribute to improved bird performance and production economics.

NeutraPath (available in select international markets) features a unique blend of essential oils, fatty acids and Amlan’s proprietary mineral technology. The product’s potent antibacterial formula was engineered to neutralize bacterial toxins, destabilize bacterial cell membranes and disrupt cell-to-cell communication between pathogenic bacteria, all while also improving intestinal health.

NeutraPath has been shown in various studies to have antibacterial properties against a variety of gram-negative and gram-positive bacterial pathogens. By reducing pathogenic bacterial intestinal colonization, NeutraPath improved feed conversion and intestinal health and reduced bacterial diarrhea, necrotic enteritis lesions, and mortality. Here we present a summary of some of the NeutraPath research, including data published in peer reviewed journals or presented at international scientific meetings. Contact info@amlan.com for more details of these studies.

Dual Effects: Disarming Pathogens and Reducing Their Prevalence
The antibacterial activity of NeutraPath against a variety of production-limiting pathogen species was demonstrated in both poultry and swine studies. In various broiler studies, birds challenged with either Salmonella enterica serovar Heidelberg, Salmonella enterica serovar Typhimurium or Clostridium perfringens had decreased prevalence and bacterial load of the pathogen in the ceca, cecal tonsils, cecal contents or cloacal swabs compared with the challenged control. There was also a fourfold reduction of alpha-toxin levels in the cecal contents of broilers challenged with C. perfringens compared with the challenged control (Figure 1).

Alpha-toxin levels info graphic.
Figure 1: Alpha-toxin levels in the cecal contents of broilers challenged with C. perfringens. Source: Southern Poultry Research, Inc., Athens, GA. 128 total birds.

In swine orally inoculated with F18+ enterotoxigenic E. coli (ETEC), feeding NeutraPath reduced the frequency of diarrhea, indicating a greater resistance to disease (He et al., 2022). Changes in the fecal microbiome and ileal mucosa microbiota composition suggested NeutraPath also helps maintain a desirable balance in the intestinal microbial ecosystem.

Collectively, these studies indicate that NeutraPath can selectively modulate gut microbiota homeostasis via exerting potent antibacterial effects against enteric pathogenic bacteria while preserving or promoting beneficial bacteria.

Healthier Swine and Poultry
The antibacterial effects of NeutraPath promote positive health benefits for poultry and swine. In broilers challenged with C. perfringens-induced necrotic enteritis in combination with Eimeria maxima infection, NeutraPath improved livability and necrotic enteritis-related lesion scores compared with challenged control birds (Figure 2). Additionally, using antibiotics instead of NeutraPath produced similar mortality rates and lesion scores as NeutraPath.

Mortality rates info graphic.
Lesion scores info graphic.
Figures 2 and 3: Necrotic enteritis-caused mortality rates and lesion scores in broilers. 240 total birds. Source: Southern Poultry Research, Inc. Athens, GA.

The data from the broiler studies indicate that NeutraPath can be used to help manage C. perfringens-induced necrotic enteritis in broilers. As mentioned earlier, NeutraPath was also shown to decrease the incidence of severe diarrhea in weaned pigs challenged with Enterotoxigenic E. coli (ETEC).

Enhanced Production Performance
NeutraPath was also able to improve production parameters in poultry and swine. In a summary of four similarly designed broiler studies that experimentally induced necrotic enteritis, NeutraPath showed better performance than the challenged control group and performed similarly to antibiotic-treated birds (Table 1). The results of these studies show that NeutraPath was comparable to an antibiotic in improving performance of broilers challenged with necrotic enteritis.

Necrotic Enteritis-challenged broiler performance info graphic.
Table 1: Comparison of necrotic enteritis-challenged broiler performance. Source: Southern Poultry Research Inc., Athens, GA. Birds were challenged with C. perfringens at 2 weeks of age and grown to day 28.

In the swine ETEC challenge study, compared to the control, pigs fed NeutraPath demonstrated improved growth during the last two weeks of the study with improvements in feed efficiency during days 14 to 21 post-inoculation. These studies demonstrate that NeutraPath can enhance growth performance in broilers and swine challenged with production limiting pathogens.

In these studies, the synergism of NeutraPath ingredients worked well to reduce pathogenic bacterial colonization, improve health parameters and enhance production performance in swine and poultry. For more information on NeutraPath or to set up your own NeutraPath trial, contact info@amlan.com.

X