Currently Viewing Posts in Antibiotic-Free Production

Calibrin®-Z: An in-depth Look at the Speed and Superior Binding Efficacy

An Urgent Need for Antibiotic Alternatives

Pseudomonas aeruginosa is a bacterial species, capable of surviving in a variety of animal and plant hosts and causing opportunistic infections. Its resistance to multiple antibiotics and disinfectants makes it a significant concern in modern medicine and animal production facilities. The World Health Organization lists carbapenem resistant P. aeruginosa as one of the top three pathogens in which new antibiotics or alternative treatments are critically needed. Aside from human medicine, livestock and companion animals are known hosts for serious infections from P. aeruginosa. Notable infections include mastitis in cattle, respiratory diseases in poultry, ear infections in dogs and reproductive infections in horses (Table 1). P. aeruginosa infections in livestock have a significant economic impact due to factors like increased morbidity and mortality, reduced production yields, higher veterinary costs for treatment and the need for stricter biosecurity measures to prevent spread. Given its pathogenic potential and resistance to antibiotics, P. aeruginosa infections in livestock require effective preventive measures and targeted therapeutic strategies to minimize economic losses and animal health impacts. 

Table 1. List of diseases caused by P. aeruginosa in various hosts

Pyocyanin, a Key Virulence Factor  

One of the crucial toxins produced by P. aeruginosa is pyocyanin. It is a phenazine compound known for its role as a virulence factor, contributing to the pathogenicity of the bacteria. Pyocyanin generates reactive oxygen species (ROS), which can damage host cells by disrupting cellular functions, impairing immune responses, and inducing oxidative stress. It also interferes with cellular respiration and signaling pathways. Pyocyanin is notable for its characteristic color and is often used as a diagnostic marker for P. aeruginosa infections. Its ability to modulate the host immune system and disrupt cellular functions makes it a key target for research on antibacterial strategies and therapeutic interventions.

Fig. 1 | Pyocyanin is a nitrogen-containing aromatic metabolite. The color of pyocyanin is blue-greenish at the neutral and alkaline pH levels and that changes to purple-red in acidic conditions. It has a low molecular weight, which enables easy biological membrane permeation.

A proven toxin binder 

Calibrin-Z is backed by over 15 years of research, proven to bind bacterial pathogens and their toxins, as well as mycotoxins, protecting production animals from a broad spectrum of biotoxins that reduce performance and cause morbidity or mortality. A one-ingredient feed additive, Calibrin-Z is made from our selectively sourced calcium montmorillonite with opal-CT lepispheres that undergoes proprietary thermal processing to promote the binding of multiple biotoxins in the intestine. Calibrin-Z’s ability to rapidly bind this broad spectrum of toxins sets it apart from others in its class. 

During research to determine if Calibrin-Z would rapidly target pyocyanin, two pyocyanin solutions were used. As shown in Figure 2, the pyocyanin solution is purple/red at pH 3 and blue at pH 7. Granules of Calibrin-Z were added into each solution. Then the samples were mixed briefly by vortexing. When minerals settled on the bottom, the pyocyanin solution looked clear suggesting the removal of pyocyanin from water solution. The fact that Calibrin-Z neutralized pyocyanin demonstrates its speed and effectiveness toward harmful toxins.  

Commercial Farms Recognize the Proven Benefits of Calibrin-Z 

Calibrin-Z offers the critical advantage of rapid toxin binding, helping prevent harmful biotoxins from being absorbed into the bloodstream—something that can happen within minutes of ingestion. Once toxins enter the bloodstream, they can causesystemic damage and disease, significantly reducing animal performance while also compromising the safety of meat, milk, and eggs. By using a proven toxin binder like Calibrin-Z, producers can help protect both animal health and food security. Backed by numerous commercial case studies, Calibrin-Z consistently delivers results,  making it a reliable solution for both poultry and livestock production. 

To begin your own Calibrin-Z trial, or for more information about the benefits of using Calibrin-Z for biotoxin control, contact us at info@amlan.com. 

References: 

Wang, D. and H. Xue. 2021. Clay mineral-based treatments in Pseudomonas aeruginosa infection control. United States Patent Application. Application No.: 17/504,338 

 

NeutraPath® Effectively Inhibits Salmonella Colonization in Poultry

Salmonella is one of the most common food-borne pathogens. The CDC estimates that Salmonella causes about 1.35 million illnesses in the United States each year, resulting in 26,500 hospitalizations annually. Previously, subtherapeutic levels of antibiotics used for growth promotion could control enteric pathogens like Salmonella. However, concerns about antibiotic resistance have led to regulations and restrictions on the use of antibiotics in animal feed. As a result, the demand for antibiotic-free alternatives that control enteric pathogens has increased dramatically.  

 To meet this growing need, Amlan International offers innovative solutions that support poultry health and performance without the use of antibiotics.   

 NeutraPath®, available in select international markets, optimizes poultry production efficiency and economic performance through a proprietary blend of essential oils, medium-chain fatty acids, and Amlan’s thermally processed calcium montmorillonite. This synergistic formula works through multiple modes of action to improve intestinal health, boost feed efficiency, and reduce mortality in disease challenged birds. 

NeutraPath: Proven to Inhibit Salmonella and Reduce Colonization

A study at the University of Arkansas evaluated  NeutraPath’s ability to inhibit Salmonella enterica serovar Typhimurium PHL2020 isolate (ST-PHL2020) intestinal colonization in broiler chickens. The research demonstrated that NeutraPath effectively inhibits ST-PHL2020 colonization in various parts of the upper gastrointestinal tract using an in vitro model designed to simulates conditions of a live digestive environment.   

 The in vitro digestion model consisted of three compartments that were simulated to match the pH, enzymatic composition, and temperature of the crop, proventriculus, and intestinal section of the chicken gastrointestinal tract.   

 The lowest concentration of NeutraPath used in this model (0.25%) reduced ST-PHL2020 colonization in the proventriculus and intestinal compartments compared to the control. An increase of NeutraPath concentration led to increased inhibition of ST-PHL2020 colonization. The 0.5% treatment reduced colonization in the crop and there was no detectable colonization in the proventriculus and intestinal compartments.   

The in vivo section of this study revealed that a 0.25% supplementation of NeutraPath resulted in a 2-log reduction of bacterial load in the cecal tonsils compared to the control. This dosage of NeutraPath also reduced total prevalence of Salmonella in the ceca to 58% compared to 100% in the control. The findings from this study suggest that the unique blend of Amlan’s mineral, select essential oils and medium chain fatty acids inhibited Salmonella spp. in vitro and decreased Salmonella spp. populations within the chicken ceca in vivo.

Downregulation of Salmonella Virulence Genes

In addition to the inhibitory effect on Salmonella growth, NeutraPath also displayed the ability to modulate virulence gene expression. ST-PHL2020 was grown in LB culture media with or without supplementation of 1mg/mL of NeutraPath for 12 hours.  

 After incubation, RNA was extracted, reverse-transcribed, and then subjected to qPCR to analyze the expression of several Salmonella virulence genes. The expression of hilA and invF in samples treated with 0.5g/mL of NeutraPath was downregulated 1.71 and 10.71-fold respectively when compared to the control. The hilA and invF genes are necessary for the assembly of the TTSS (Type III secretion system) within Salmonella that is responsible for delivering effector proteins into the cytoplasm of host cells to promote virulence and colonization. NeutraPath also downregulated the expression of sopB, sopE, and sipA compared to the control. These genes encode effector proteins that stimulate inflammation and enhance the efficiency of host cell invasion.

These findings demonstrate NeutraPath’s ability to inhibit bacterial colonization in the chicken gastrointestinal tract and to neutralize important virulence factors. The results suggest that NeutraPath can be a viable alternative to antibiotics for controlling enteric pathogens in poultry production. To learn more about NeutraPath, visit amlan.com or connect with a local representative here. 

References:  

Eichelberg, K., & GaláN, J. E. (1999). Differential regulation of Salmonella typhimurium Type III secreted proteins by Pathogenicity Island 1 (SPI-1)-Encoded Transcriptional Activators INVF and HILA. Infection and Immunity, 67(8), 4099–4105. https://doi.org/10.1128/iai.67.8.4099-4105.1999  

 Xue, H., Wang, D., Hargis, B., & Tellez-Isaias, G. (2022). Research Note: Virulence gene downregulation and reduced intestinal colonization of Salmonella enterica serovar Typhimurium PHL2020 isolate in broilers by a natural antimicrobial (NeutraPathTM). Poultry Science, 101(6), 101822.  

Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED) 

 

Billions with a B: The Global Cost of Coccidiosis in Poultry

Estimates of the global cost of coccidiosis in poultry vary widely, but most place the figure in the tens of billions of U.S. dollars. Coccidiosis is characterized by symptoms such as diarrhea, intestinal lesions, morbidity, and mortality, along with decreased weight gain and feed efficiency.   The intestinal damage caused by the disease can lead to secondary issues such as necrotic enteritis, which has become more prevalent as poultry producers reduce antibiotic use.  The majority of losses stem from reduced production due to subclinical coccidiosis.  The lack of overt disease emphasizes the importance of vigilance and proactive management systems.

To combat the impact of coccidiosis in poultry, producers rely on a range of methods, each offering unique benefits and presenting specific limitations.  Traditional control methods include the use of vaccines, ionophores, and chemical coccidostats.  However, natural alternatives for managing coccidiosis have been developed through the years, including the use of phytogenic compounds.

A Sustainable Natural Alternative

Phylox® (available from Amlan International in select international markets), a natural feed additive featuring a select blend of bioactive phytochemicals was researched to determine its effects on broilers challenged with multiple species of Eimeria. Phylox is designed to interrupt the complex Eimeria lifecycle at several key points, preventing damage to the host and reducing the risk of growing resistance. It works by compromising the sporozoites’ cell membrane, inhibiting oocyst sporulation, enhancing anticoccidial immunity, and supplying essential energy to the intestinal cells. By targeting all three stages of the coccidia lifecycle, Phylox helps protect intestinal integrity and support overall bird health. 

Research shows that Phylox decreases the effects of coccidiosis on gut health and improves bird performance. Two experiments that lasted 28 days each were used to study its effects on young broilers during an Eimeria challenge. Both studies used a multi-species coccidia challenge that included giving an oral dose of E. maxima (50,000 oocysts), E. acervulina (100,000 oocysts), and E. tenella (75,000 oocysts) to each bird on the 14th day of the experiment. Six days post-challenge five birds per pen (eight pens per treatment) were euthanized so that intestines could be inspected for coccidial lesions. The Johnson and Reid (1970) scoring method was used to assess the severity of intestinal lesions caused by coccidiosis, with a score from 0 (no visible lesions) to 4 (severe, widespread lesions). No coccidia vaccine or medication was used in the first study, which evaluated the effect of Phylox on both unchallenged and challenged broilers. The second study was conducted to compare Phylox to drugs currently used to control coccidiosis in the field.

Feeding Phylox improved gut health in broilers challenged with multiple Eimeria species. This was evidenced by lower coccidia lesion scores in birds fed Phylox compared to untreated, challenged birds (Study 1), with scores decreasing from 2.43 to 1.85. Lower lesion scores, indicating improved gut health, are expected to result in better feed efficiency. Feeding Phylox to birds challenged with multiple Eimeria species improved feed conversion, both during the critical period following the challenge and overall. Additionally, no negative effects were observed in unchallenged birds fed Phylox.

In Study Two, feeding Phylox, salinomycin, or Nicarbazin equally reduced lesion scores compared to challenged but untreated birds. The resulting improvement in gut health led to improved feed conversion ratios for all treatments. Each of the three coccidiosis treatments produced similar results, with improvement in feed conversion observed both during the post-challenge period and throughout the overall experimental period. This research demonstrates that feeding Phylox to Eimeria-challenged broilers mitigated the effects of coccidiosis, with outcomes comparable to those of commonly used treatments.

Immune Function

The gut of any animal faces constant challenges. Broilers continuously ingest bacteria, parasites, toxins, and other harmful substances along with their feed and water. The intestinal wall acts as a crucial barrier, preventing these pathogens from entering the body. This is why the majority of a chicken’s immune tissue is located in the gastrointestinal tract.

A third experiment examined the effects of coccidia and Phylox on immunity and gut microbiota. The research showed that Phylox helped preserve immune homeostasis by enhancing the anticoccidial immune response during coccidial challenge. Specifically, Phylox preserved the function of protective mucosal immunity by promoting a non-terminally differentiated helper T-cell subset (CD8-CD28+). This helps ensure a competent T-cell response during pathogen challenges, such as the Eimeria challenge used in this experiment.

Additionally, Phylox reduced Eimeria challenge-associated upregulation of cecal IL-10. IL-10 is an anti-inflammatory cytokine with potent immunosuppressive effects. Intracellular parasites like coccidia can use the immunosuppressive properties of IL-10 to help them survive in a hostile environment. When coccidia causes an increase in IL-10 during a challenge, as seen in this experiment, it results in a decreased immune response just when the animal needs the immune response to help fight the disease. Phylox fed broilers showed suppression of IL-10 during the coccidia infection, allowing a proper and effective immune response to occur. This was shown by decreased cecal IL-10 mRNA when Phylox was fed.

Summary

To mitigate losses associated with coccidiosis in poultry, innovative solutions are essential to complement existing vaccines and drugs. Producers require new, consumer-accepted alternatives to effectively manage coccidiosis on their farms. Phylox serves as a valuable addition to the available tools, helping to address this persistent challenge and support poultry health and productivity. To learn more about Phylox, or to begin a field trial, contact your local Amlan representative here.

Varium®’s Long History of Boosting Poultry Performance Expands with New Swine Study

Varium® and its sister product, NeoPrime, were developed as non-antibiotic alternatives to improve production by optimizing gut health in poultry and swine respectively. Amlan has decided to streamline product offerings, research shows Varium’s patented blend of natural ingredients can provide equal benefits in swine. In a recent study, Varium improved feed conversion, reduced mortality rates and improved the overall well-being and performance of swine on a commercial farm in Mexico.

Weaned piglets are particularly susceptible to digestive disorders that can lead to poor performance.  Weaning is a critical stage for piglets, as their digestive systems are still developing and highly vulnerable to disruptions. The abrupt change in diet, combined with the stress of separation from the sow, often leads to digestive disorders like post-weaning diarrhea. These conditions can hinder nutrient absorption, weakening the piglets’ immune system and overall health. This reduction in performance early in life creates a fallback lag for the challenged piglet, which follows the animal all the way to maturity. Piglets left unsupported during weaning display lower market weight as this extended period of decreased feed intake, poor nutrient absorption, and diminished weight gain hinders healthy and efficient growth early in life. This, in turn, negatively affects the bottom line of producers worldwide. To mitigate these challenges, it is important to implement strategies to support gut health during this transition to maintain the health and performance of weaned piglets.

The patented technology of Varium offers a synergistic blend of ingredients designed to address the key challenges faced by weaned piglets. Varium was specifically designed with 3 unique modes of action to improve performance and reduce the challenge an animal faces when exposed to pathogenic bacteria and toxins. Varium works by binding pathogenic bacteria and their toxins,  protecting the gut from intestinal damage linked to performance loss, and provides an energy source to fuel the growth of healthy enterocytes vital for nutrient absorption. Additionally, it supports immune cell heath and function ensuring that the animal’s natural immune system is operating in an optimal state. Proven effective in the market for over the past 10 years, Varium was tested in a 148-day trial on weaned piglets, delivering promising results in promoting gut health and overall performance.

This trial compared the performance of 180 weaned piglets, randomly distributed in blocks of 90 males and 90 females between two treatments: Diet formulated with Varium, and diet formulated without Varium. The parameters for success included daily feed intake, average daily weight gain, feed conversion, mortality and diarrhea incidences. In all categories, the Varium group showed improvements over the control group.

Feed Conversion

 

Pigs that were fed Varium showed a advantage in feed conversion over the control group, most notably during feeding phases 3 and 6.

 

Mortality Rates

 

Mortality rates showed the most notable difference during phase two, when pigs fed Varium showed a mortality rate that was more than 60% less than the control group. The accumulated mortality rate over 7 phases for the Varium group showed a 43% reduction in mortality rate when compared to the control.

 

Diarrhea Incidence

 

The addition of Varium to the pigs’ diet cut the incidences of both pasty and liquid diarrhea in half, indicating an improvement in intestinal integrity provided by Varium.

 

Body Weight

 

After 148 days, pigs in the Varium group weighed an average of 9% more than those on the control group, further supporting Varium as a beneficial addition to pigs’ diet.

 

Feed Intake

 

The Varium group showed lower feed intake at all 7 stages over control. This, combined with improved feed conversion rates and higher live weights indicate a more efficient use of feed from the Varium group.

Improved Feed Efficiency and Gut Health is a Beneficial for Producers

Weaned pigs fed Varium in this study simply performed better than the control group. The improvement in feed conversion, along with the positive trend in body weight and reduction in mortality, suggests that Varium can be an effective tool for improving herd health and overall performance in swine.

To learn more about Varium, contact your local representative at amlan.com

 

Company Information

Amlan is the animal health business of Oil-Dri Corporation of America, a leading global manufacturer and marketer of sorbent minerals. Leveraging over 80 years of expertise in mineral science, Oil-Dri Corporation of America, doing business as “Amlan International,” is a publicly traded stock on the New York Stock Exchange (NYSE: ODC). AmIan International sells feed additives worldwide. Product availability may vary by country, associated claims do not constitute medical claims, and may differ based on government requirements.

Understand How Calibrin®-Z Controls T-2 Toxin in Broilers

Poultry producers mostly know T-2 toxin by the horrific lesions seen on the beaks of poultry. The fast-acting T-2 toxin has a major impact on the growth and performance of poultry and livestock. Luckily it is not the most common trichothecenes toxin produced by Fusarium molds, deoxynivalenol would fill that spot, but T-2 is considered the most toxic of the trichothecenes. This poison can be inhaled or adsorbed through the skin or the gastro-intestinal tract and causes multiple problems in poultry and livestock. A short list of problems includes decreased gain and feed efficiency, decreased egg production and hatchability, decreased immune function, and increased mortality. It has been shown to have a synergistic negative effect with other mycotoxins in the diet or when administered in conjunction with lipopolysaccharide (aka LPS). This may be one reason why there is additional negative impact when there is a co-challenge with T-2 and gram-negative bacteria. Control of other dietary mycotoxins or LPS concurrently with T-2 may be important in any attempt to decrease its effects.   

 

T-2 toxin decreases the productivity of poultry and livestock by inhibiting protein synthesis at the cellular level and causing cell death. In eukaryotic cell’s DNA, RNA, and protein, synthesis is inhibited by T-2 toxin. It also induces apoptosis or programmed cell death.

A major concern in poultry is how T-2 affects the gastrointestinal tract starting with lesions of the beak and gizzard and going through the entire gut. These lesions will affect feed intake, gain, and feed efficiency. But T-2 can affect all aspects of production and reproduction, so egg production and hatchability also need to be considered. In early research looking at the effects of T-2 on hatchability, 2 ppm of T-2 toxin was fed to laying hens, egg production decreased by 3.8 percent, fertility of the eggs that were laid decreased by 1.7 percent, and hatchability of fertile eggs decreased by 5.6 percent. This is a substantial loss of hatched chicks because of the toxin in the feed.

T-2 is quickly adsorbed. And it can be adsorbed through the lungs, the skin, or through the gastrointestinal tract when ingested in the feed. Approximately 90% of T-2 is adsorbed into the body within 30 minutes of ingestion, but it does have a short half-life of less than 20 minutes. T-2 producing Fusarium molds can occur in feedstuffs either during a warm and moist growing season or during storage under high moisture, especially if stored grains have damage such as broken or cracked kernels. The best option for producers is to use feedstuffs free of all toxins, however, the reality is that this is not always possible. In those cases where feedstuffs are being fed that may contain T-2 it would be beneficial to have a fast-acting toxin binder in the diets.   

Because T-2 is so damaging and so rapidly absorbed, the toxin binder that is used needs to work and work fast. Calibrin®Z, available in select international markets, adsorbed ~70% of T-2 toxin within 1 minute in research looking at speed-of-binding in vitro. This was approximately 24 times faster than the other products used in the trial. Additionally, Calibrin-Z had previously been shown to bind other mycotoxins and LPS in vitro and in vivo, which may be important during a T-2 challenge. A test to determine the binding ability of Calibrin-Z in vitro was conducted to look at seven common fungal biotoxins where the binder-to-toxin ratio was as if there was 1 kg of Calibrin-Z per metric ton of feed vs. observed concentrations of mycotoxins in feed. In vitro data showed that Calibrin-Z could bind LPS, but it has also been seen in vivo when Calibrin-Z was being fed to laying hens.

Calibrin-Z Mitigates the Effects of T-2 Toxin in Broiler Chicks

Recently, research was conducted at a large university in Brazil to determine the effects of Calibrin-Z on broiler chickens challenged with dietary T-2 Toxin. For this experiment, a total of 180 one-day-old male Cobb 500 broiler chicks were used. At the beginning of the trial the birds had an average body weight of 47 grams, with the average initial weight for each bird being equal. They were fed three different treatments 1) Unchallenged Control; 2) Challenged Control with 2 ppm T-2 Toxin; and 3) 2 ppm T-2 Toxin with 0.5% dietary Calibrin-Z. They were fed the treatment diets for 21 days. No aflatoxins, deoxynivalenol, diacetoxyscirpenol, fumonisins, ochratoxin A, T- 2 Toxin or zearalenone were detected in the feed ingredients that were tested before mixing the diets. The T-2 Toxin that was added to the feed for the challenged treatments was produced by Fusarium sporotrichioides fungi, and was 82% T-2 Toxin, 18% HT-2 Toxin.  There were 6 pens that were randomly assigned to each treatment and there were 10 chicks in each pen. Chicks had free access to a constant supply of food and water. The diet was corn-soybean meal-based and formulated according to requirements in the Cobb Broiler Management Guide.  

The intent of the study was to determine the effect of T-2 toxin on growth performance of broilers and how the addition of Calibrin-Z helped to mitigate any negative effects. Calibrin-Z is a unique calcium montmorillonite that has been shown to bind toxins, both fungal and bacterial, as well as lipopolysaccharides (LPS).

Feeding Calibrin-Z to the birds challenged with T-2 toxin increased body weight by 5% compared to the birds that were fed diets with T-2 toxin and no Calibrin-Z. This improvement returned body weight to that of the unchallenged control birds. In this experiment, there was no effect of feeding T-2 on feed intake with birds on all three treatments having equal feed intake.

Because there was no difference in feed intake the feed conversion ratio followed the same pattern seen in body weight. Feeding Calibrin-Z to birds challenged with T-2 toxin improved feed conversion by 8 points, with values of 1.50 for Calibrin-Z fed birds compared to 1.58 for birds that only received T-2 toxin in the feed.

While aflatoxin is the mycotoxin best known for its negative effects on the liver, T-2 toxin can also have bad effects. In this study, relative liver weight was higher in the challenged control, 3.33%, compared to the unchallenged control, 2.84%, but feeding Calibrin-Z again mitigated the negative effect of the T-2 toxin, with challenged birds fed Calibrin-Z having a relative liver weight of 2.96%.   

T-2 Toxin is a fast-acting mycotoxin that has a tremendous impact on animal performance. It acts in a synergistic way with challenges from other mycotoxins and lipopolysaccharide. To decrease its impact, you need a fast-acting toxin binder to control T-2 quickly while also controlling other potential problems. Calibrin-Z is a fast-acting multi-toxin binder that has proven results.   

As the animal health business of Oil-Dri® Corporation of America, Amlan products are backed by Oil-Dri’s 80-plus years of mineral science expertise. Oil-Dri and Amlan are vertically integrated and own every step of the production process to consistently deliver safe, high-quality animal health products around the world. Calibrin-Z, a calcium montmorillonite clay, is sold as a broad-spectrum toxin binder. To understand how Calibrin-Z can work in your production system, contact your local Amlan representative.

 

References: 

Chi, M. S., C. J. Mirocha, H. J. Kurtz, G. Weaver, F. Bates, and W. Shimoda. 1977. Effects of T-2 Toxin on Reproductive Performance and Health of Laying Hens. Poultry Sci. 56:628 – 637.  

Tai, J.-H. and J. J. Pestka. 1988. Synergistic interaction between the trichothecene T-2 toxin and Salmonella typhimurium lipopolysaccharide in C3H/HeN and C3H/HeJ mice. Toxicol Lett 44:191–200.  

Mycotoxins: Risks in Plant, Animal, and Human Systems. 2003. Task Force Report No. 139 Council for Agricultural Science and Technology. Ames, Iowa, USA.

Mineral-based solution for dairy cow gut health

During the 2023 World Dairy Expo held in Madison, Wisconsin, Ann Hess from Feedstuffs 365 spoke with Amlan, the Animal Health business of Oil-Dri, about mineral technology as a solution to support gut health and improve diary performance. Listen to Dr. Marc Herpfer, VP of New Technologies, Regan Culbertson, VP of Strategic Marketing, and Jay Hughes, Director of Technical Services, Americas discuss how the unique, thermally processed calcium montmorillonite with opal lepispheres are driving economic, bottomline, performance in the dairy industry.

Watch the interview here.

Fifteen Years of Driving Profits Naturally: The History of Amlan International

Dan Jaffee profile with Amlan International logo.

Oil-Dri® Corporation of America has been active in the animal health market since the 1980’s with products designed to help feed flowability and pellet binding. But in 2007, Oil-Dri took a leap — a well-informed, scientifically-backed leap — further into the animal health market with the registration of the Amlan International brand and the official launch of their animal health business. Fifteen years later, Amlan International is a successful global brand that helps poultry and livestock producers optimize intestinal health and add value to their operation. So why did Oil-Dri, a company founded on a garage floor oil adsorbent, decide to invest in animal gut health solutions? And what does the future look like for Amlan?

Creating Value for Animal Health Producers

Consumer demands and concern over antimicrobial-resistant pathogens have created a global push toward antibiotic-free and natural animal protein production. But this change in production has also created the need for natural solutions to help manage the health and productivity of flocks and herds. As Dan Jaffee, President and CEO of Oil-Dri and President and General Manager of Amlan, explains, Oil-Dri saw the opportunity to create value for animal protein producers by leveraging an Oil-Dri-owned mineral to develop novel, natural feed additive solutions under the Amlan brand.

“We realized there was a market need, and Oil-Dri had an incredible natural solution to the problem. Our clay naturally does amazing things; but then when we combine our clay with our multi-million-dollar research investments, in our core lab and our new microbiology lab, we’ve been able to do some incredible things. And we’re really just at the beginning.”

—Dan Jaffee, President and CEO of Oil-Dri, President and General Manager of Amlan

As the animal health business of Oil-Dri, we take full advantage of the benefits that vertical integration brings, including control over the quality of our mineral and ensuring consistency of supply for our customers. We also leverage the 80 years of Oil-Dri mineral science expertise, and we share the values and business ethics of Oil-Dri.

A Broad Range of Natural, Value-Adding Products

Amlan started with just two products, sold internationally outside of North America — biotoxin binding Calibrin®-Z and aflatoxin-binding Calibrin-A. Both products are made from our single-source calcium montmorillonite that undergoes proprietary thermal processing tailored for each product. It’s our mineral’s natural properties and our proprietary processing technique that make our mineral-based products stand out from other clay additives in the market.

Investing heavily in research and development has allowed us to expand our international product range by combining natural ingredients with our mineral to develop synergistic intestinal health solutions for production animals. This included the 2015 launch of Varium® for poultry and NeoPrime® for swine, which help reduce the level of pathogenic challenge in the intestine, strengthen and energize the intestinal barrier and stimulate intestinal immunity. The technology behind Varium and NeoPrime is patented in Brazil, Indonesia, Korea, the European Union, the United States and China, with other countries pending.

Most recently we expanded our international product portfolio with the launch of Phylox® Feed, a natural alternative to anticoccidial drugs and vaccines and NeutraPath®, a natural pathogen-control product (available in select markets). In 2021, Amlan also launched a broad portfolio of products specifically for North American producers. And we’re not done — we have more innovative products in our research pipeline that will continue our efforts to optimize animal intestinal health and provide value for producers.

Your Animal Intestinal Health Partner

Innovative products are a great start for a new business, but we see customers as partners, not numbers on invoices, so we also needed knowledgeable technical service specialists and a strong sales team to support our mission of creating value for our customers. Our team helps customers achieve their production goals by integrating rations with the best Amlan solutions for each situation. As Dan Jaffee mentions in the video below, this includes trialing products first to show customers the true value Amlan can bring to their operations.

Growing Our Future and Yours

Our goal for the future is to continue investing in innovation to continue developing natural solutions to industry challenges that can help producers drive profits naturally. You can hear Dan’s thoughts on the future of Amlan in the video below. Everyone at Amlan shares Dan’s excitement about the intestinal health solutions we are bringing to the animal production industry and the value our products offer for producers. To learn more about Amlan, our innovations and our team, visit our Who We Are page.

 

Complete Control Over Mineral Supply Safeguards the Quality of Amlan International Products

Amlan company values infographic

As the animal health business of Oil-Dri® Corporation of America, Amlan International’s scientifically proven products are backed by Oil-Dri’s 80+ years of experience in mineral science. Amlan has access to the hundreds of millions of tons of mineral reserves that Oil-Dri, based and operating in the USA, selectively mines, processes and sells in a diverse range of industries throughout the world. Vertical integration allows Oil-Dri and Amlan to own every step of the production process and consistently deliver reliable non-medicated solutions to support animal protein producers around the world as they look to optimize animal health and production economics.

Safe Thermal Processing

The single-source raw material used in Amlan products is an all-natural mineral ingredient that contains high-capacity opal-CT lepispheres. This mineral is selected because its properties allow for thermal processing that is specifically talilored for each product. Thermal processing ensures the minerals’ structural integrity and optimizes the products’ broad utility, ultimately helping producers achieve normal animal health and meet their production goals.  

Independent Assessments for Regulatory Requirements

Each quarter, all Amlan product lots are assessed by an independent laboratory to ensure they comply with  regulatory requirements. These analyses ensure the mineral is below any established regulatory levels for dioxins (PCDD/F+PCB) and heavy metals (lead, cadmium, arsenic and mercury) in feed or food. This report is available upon request by contacting info@amlan.com. For both performance and safety, Amlan also performs extensive core drilling analyses of their raw material and selectively mines the highest quality raw materials for use in their products.

High-Quality Manufacturing Standards

All Amlan products are made to the highest industry standards for non-medicated feed additives to ensure their safety and consistent performance. Amlan’s quality systems are audited and certified annually by independent parties to demonstrate compliance.

Approved Feed Ingredients Only

Amlan’s feed additives only use ingredients that are approved for use in feed products by major regulatory bodies such as the U.S. FDA or the EU. This helps to secure the safety of the animal and, as Amlan’s products are developed for protein-producing animals, ensures end consumers are safe too. Amlan is proud to carry the Organic Materials Review Institute (OMRI) seal of approval on many of its products. OMRI Listed® products are approved for use in certified organic operations under the USDA National Organic Program.

High-Quality, Safe Products Are Paramount

Along with following ISO-9001 standards and a certified HACCP system, Amlan is also a certified International Safe Feed/Safe Food plant. This voluntary and independently certified program designed for the total feed industry establishes comprehensive standards of excellence that go beyond existing regulations to maximize food and feed safety. This certification assures customers that Amlan’s products are safe, healthy, trustworthy feed solutions. For all applicable products and production facilities, Amlan also meets the requirements set forth by FAMI/QS — a certification created exclusively for specialty feed ingredients and their mixtures. Many countries require the FAMI/QS certification to sell market specialty feed ingredients within their borders.

Mineral Technology Is the Amlan Difference

Amlan’s proprietary mineral technology is the foundation of their innovative products. In fact, multiple governments, including the United States, the European Union, China, Korea and Indonesia have recognized the unique mineral-based technology within Amlan’s products Varium® and NeoPrime® and have issued a patent for the products’ modes of action.

By leveraging their owned, unique mineral technology and committing to the highest quality standards, Amlan develops innovative and reliable natural, mineral-based feed additive solutions for poultry and livestock. To learn more about Amlan’s products, visit https://amlan.com/products/.

ABF Poultry Production Best Practice Series: Air Quality

Antibiotic free poultry air quality infographic

An effective poultry house ventilation system is essential for keeping litter dry, ammonia levels low and creating an environment that promotes healthy and efficient birds. This also includes managing the temperature and humidity to keep birds near their thermoneutral zone which will help drive weight gain and maximize feed conversion. Here, we take a closer look at what our industry experts consider air quality best practices for antibiotic-free poultry producers, as part of our series on strategies for producing antibiotic-free poultry.

Achieve Low Moisture and Ammonia Levels

Removing moisture from the poultry house is key for birds that are healthy and performing at their potential. Maintaining air movement, with fresh air coming in and stale air moving out, helps keep the floors and litter dry. As mentioned in our previous post on house environment and biosecurity, dry litter reduces the risk of disease and helps ammonia stay at acceptable levels.

Monitoring ammonia levels is an important factor for protecting bird health. If ammonia levels are too high it can irritate the birds’ nasal passages, trachea and eyes and cause dermatitis in paws, leading to poor performance. To keep birds safe, electrochemical, colorimetric or dosimeter tubes are available to monitor ammonia levels. Products can also be added to the litter to help minimize ammonia concentration, but keeping the litter dry (e.g., no leaking water lines) and providing adequate air flow and ventilation are important first steps.

Wet droppings due to poor intestinal health can also contribute to increased moisture and ammonia levels in the litter. Preventing enteric diseases, such as coccidiosis and necrotic enteritis, can help reduce the occurrence of diarrhea or wet droppings. Enteric diseases were traditionally controlled by antibiotics, but with the increase in antibiotic free production, natural alternatives are now available that can help maintain intestinal health and integrity.  

Maintain Thermoneutral Zone

Birds should be kept near their thermoneutral zone so that they are not cold or heat stressed and are better able to cope with other stress, such as pathogens in the environment. Controlling air temperature and humidity in the house is a large task as not only does the weather impact them, the birds themselves put out their own BTU which contributes to the overall heat and moisture in the house. 

If available, controllers can program fans and heating systems to try to maintain the temperature and humidity within a set range for the birds’ age. However, parts of the ventilation system can break, so it’s important to regularly perform a manual check to ensure everything is functioning correctly.

While it is important to keep birds warm in winter, it is also important that enough fresh air is introduced into the house to keep ammonia and moisture levels low. Once the cold air enters the house, negative pressure should be used to warm the air, then exhaust it, thereby picking up moisture and helping to dry the floor. Producers should consider the most efficient way that this can be achieved in their system.

In hot weather, large fans at the end of the house can push air movement through the house at more than 500 feet/minute. This fast air speed creates a wind chill that can drop the “feels-like” temperature by at least 10 °F. Other methods to keep the birds cool include evaporative cooling cells and foggers which create a fine mist over the birds. These need to be maintained well to avoid creating wet areas in the house. The water used in these systems should be good quality to avoid mineral build-up in the lines causing damage and introducing pathogens to the birds. More information on water quality can be found in our water quality ABF best practices post.

Back-up generators and emergency plans are essential for protecting birds and the farm from disastrous consequences in a power outage. Without adequate ventilation and air movement, the environment inside the house can become dangerous very quickly, in both cold and hot conditions. Houses are usually sealed tight to ensure efficient heating/cooling, but this means that humidity and temperature can increase very quickly during power failure, as well as CO2 levels and water vapor from the birds.

Providing an optimum poultry house environment with adequate ventilation, the right temperature and humidity for the birds’ age and low contaminants in the air is key for maximizing bird performance. Amlan is dedicated to developing next-generation technology to help poultry producers keep birds healthy and maintain productivity for life. Check our Education Center for other posts in our ABF production best practices series.

ABF Poultry Production Best Practice Series: House Environment and Biosecurity

Antibiotic free poultry sanitation hygiene infographic

All poultry farms should maintain effective house sanitation and biosecurity practices to produce healthy and productive birds, but this is even more important when the goal is antibiotic-free (ABF) production. Here, we take a closer look at what our industry experts consider as best practices for house environment when producing ABF broilers, as part of our series on strategies for producing antibiotic-free poultry.

A Healthy Start to Life

Producing healthy flocks begins at the hatchery. It is important that the chick is provided a clean environment right from the start, and this includes while it is still in the egg. The hatchery should be kept clean, disinfected often and there should be no contamination on the egg pack. If in ovo vaccination is used, sanitary conditions are crucial to keep infection and 7-day mortality rates low. Keeping the chick’s stress low during transport and transition to the farm is also important for a healthy, productive bird.

Starting with a strong, healthy chick is important, as weak chicks are more likely to succumb to pathogens and have higher mortality rates. Once the chicks arrive at the house, they should immediately be provided with high-quality nutrients, which includes fresh, clean water as well as feed. Water quality best practices are discussed in another post that is part of our strategies for producing ABF poultry series.

Another important factor in producing a strong, healthy chick is a healthy breeder. A healthy breeder produces a better egg (e.g., superior shell quality) which means a safer start for the chick. To keep breeders healthy in a ABF system, feed additives can be used instead to ensure peak performance.

Effective Litter Management: Time Consuming but Essential

Litter management is critical to keeping birds healthy and productive and reducing disease challenges. The ideal litter has a depth of 3 to 4 inches and has low moisture and ammonia levels. When choosing an appropriate litter (e.g., pine shavings, rice hulls, hay, wheat straw), it is important to consider how well it absorbs moisture and if it can contaminate feeders easily.

In some cases, litter can be reused if any caked/wet litter is removed first. Wet litter can be prevented by managing water nipples, lines, pressure and height correctly and monitoring for leaks regularly. An effective ventilation system is also important for keeping litter dry, ammonia levels low and birds healthy. We will discuss the importance of air quality in a future ABF best practices post.

Our industry experts recommend allowing 14 days between batches to get the litter dried out. They also recommend windrowing (piling into rows) the litter during this time. While it is time expensive, windrowing heats the litter (it should be at least 130 °F or 54 °C for 3 to 4 days), reducing the pathogen load and infestation of insects such as darkling beetle, while allowing the surrounding floor to dry.

It’s also recommended that once a year the house is cleaned to the ground, disinfected, the floors salted, and dust removed as much as possible. Some producers may notice that the first batch of birds in the house after an annual cleanout does not perform as well, since the beneficial bacteria are also removed when the litter is completely removed.

Biosecurity Is Key

The biggest risk to introducing pathogens and disease to a flock is people, especially those responsible for the flock’s day-to-day management. To avoid infecting the flock, visitors to the farm should be limited and personal protective equipment should always be worn. This can include boots, mask, hair nets, coveralls and gloves and using footbaths between houses. Even though boots worn in the houses should be left at the farm, it is good practice to use disinfectant spray on shoes and floorboards when arriving at and leaving farms. Any shared equipment and the tires of vehicles should also be sprayed with disinfectant when moving between farms. Ideally, equipment that is used often should be purchased for and remain at each farm. 

Rodents can also carry pathogens into the house and infect the flock. Even if the house appears sealed, rodents may still find a way in. Insects can also be an issue, particularly for long-lived birds (25 to 65 weeks). Therefore, it is advisable to have a pest control system in place. Wild birds like ducks and geese can also introduce pathogens (e.g., avian influenza) into the flock by contaminating open water sources (e.g., ponds) or through foot traffic.

Managing poultry house environmental conditions and biosecurity takes a lot of time and resources but is essential for keeping flocks healthy and production profitable. Amlan is dedicated to developing next-generation technology to help poultry producers keep birds healthy and maintain productivity for life. Download a helpful, printable guide that summarizes the above best practices here, and check our Education Center for other posts on our ABF production best practices series.

X