Currently Viewing Posts in International Products

Advanced Technologies to Mitigate Disease in Poultry Production

As more poultry producers incorporate antibiotic-free (ABF) practices into their operations, the need for innovative disease mitigation technologies has also increased. Amlan International is meeting this demand by developing next-generation products, using mineral-based technology, that optimize bird intestinal health and add value for the producer.

 

In this post we examine four technological advances that could help drive progress in managing disease, bacteria and toxins in flocks while meeting consumer demands for high-quality animal protein. We discuss the advanced mineral technology that is the foundation of Amlan’s natural feed additives as well as a unique diagnostic service offered by Amlan. We also highlight technology on the market from other (unaffiliated) companies that our team thought might be useful for ABF producers to consider when looking for new ways to manage disease in their flock.

 

  1. Optimize intestinal health with advanced mineral technology

In a crowded feed additive market, advanced mineral technology is the Amlan difference. As the animal health business of Oil-Dri® Corporation of America, Amlan’s scientifically proven products are backed by

Oil-Dri’s 80 years of experience in mineral science. The single-source raw material that is the core of Amlan’s products is calcium montmorillonite with high-capacity opal-CT lepispheres. Proprietary thermal processing — that does not use harmful chemicals — is tailored for each product to create unique functionalities.

 

Calibrin®-Z (available in select international markets) is a broad-spectrum biotoxin binder that protects poultry and livestock from biotoxins that reduce performance and cause morbidity or mortality. All-natural Calibrin-Z binds polar (e.g., aflatoxin) and nonpolar (e.g., zearalenone) mycotoxins, as well as bacterial toxins like those produced by C. perfringens, E. coli and C. difficile. Binding these biotoxins enhances intestinal health to improve feed efficiency and overall animal performance.

 

  1. Minimize production loss with timely mycotoxin diagnostic results

When determining whether feed is contaminated with mycotoxins, a fast and accurate analysis is critical for preventing the negative health and production effects mycotoxins can cause. Amlan has partnered with Envirologix, the world’s most trusted name for quantitative testing kits at the point of grain delivery, to bring producers . This program provides on-site quantitative mycotoxin detection results within 10 minutes. The test identifies mycotoxin contamination levels in the feed, and Amlan’s dose calculator can be used to determine the optimal dose of  to apply in the animal’s ration to mitigate the toxin threat.

 

  1. Automation technology increases animal welfare and detects disease

Robot automation in poultry barns is a growing segment of the poultry industry. Robotic technology uses sensors and 2D and 3D cameras to perform repetitive and time-consuming tasks such as disinfecting barns, picking up floor eggs, vaccinating and managing litter.

 

Increasingly important in modern poultry operations, robotics can also help mitigate production risks and ensure animal welfare goals are met. Thermal imaging can be used to detect animal body temperatures, early disease indicators, record bird activity/welfare and report mortalities while performing their assigned tasks. Monitoring technology can also help producers observe environmental metrics in facilities such as temperature, humidity and carbon dioxide and ammonia levels. A recent development in this area is using sensors to determine when a poultry house smell is no longer “normal.” This technology could help identify a biosecurity or disease risk to a flock.

 

  1. Blockchain technology facilitates food traceability

Modern consumers are increasingly demanding to know more about how and where their food is raised. Blockchain technology, often in combination with other digital tech, helps track and trace animals and food products throughout the supply chain by linking small packages of data to provide a digital audit of meat production and food safety. At the farm level, these data points could include point of origin, veterinary and feed source records and transportation dates.

 

As poultry move through the food production system, blockchain technology records significant data points to ensure food supplies meet the traceability requirements that consumers demand. In the processing sector, for example, blockchain can link production information with the final product’s labeling and packaging information to ensure compliance with brand commitments. Blockchain offers incredible promise for connecting poultry growers with new market opportunities.

 

These emerging trends are important to monitor so producers can determine how best their operations can evolve and remain competitive. Investing in the right technologies will be the key to moving poultry producers to greater production, improved efficiencies,  enhanced market opportunities and increased profitability. At Amlan, we are developing and bringing to market advanced feed additive technologies that optimize the intestinal health and production efficiency of producers’ flocks while preserving the economic viability of poultry production. To learn more, click .

 

 

 

Research Shows NeoPrime® Benefits Swine at Multiple Life Stages

NeoPrime® logo with sow and piglets background.

Weaning is a stressful time for piglets and can have negative impacts on their intestinal environment, overall health and production performance. Multiple studies have shown that improving intestinal health and function with NeoPrime® can help reduce the negative fallback effects of weaning. But what about other times in the pig’s life? Can improving the intestinal health of sows, gilts or pre-weaned piglets with NeoPrime supplementation improve their performance and health?

Here are three case studies that demonstrate the positive effects NeoPrime can have on the fecal microbiota, nursery swine performance, piglet mortality as well as sow and gilt performance and health. These factors help producers drive profits naturally by increasing potential revenue and decreasing the cost of production.

Weaning and NeoPrime Change the Fecal Microbiota

Researchers at a university in Mexico investigated the effects of NeoPrime on select fecal microbial populations when NeoPrime was supplemented both pre- and post-weaning (0 to 56 days-of-age). Sixteen litters of newborn piglets with similar body weight were assigned to either NeoPrime or control treatment groups. Piglets in the NeoPrime group (eight litters) were given two oral doses of NeoPrime (300 mg) in water, the first immediately after birth and the second two hours after consuming colostrum. The same piglets were offered NeoPrime-supplemented creep feed (0.15% w/w) from day 7 until weaning on day 21. The eight control litters received isovolumic sham (water) doses with identical scheduling as the NeoPrime group and were offered non-supplemented creep feed. Previous data showed NeoPrime improved growth performance and decreased diarrhea when fed at weaning. This prompted researchers to administer NeoPrime at birth, using oral doses to ensure that all piglets received a similar initial dose, an off-label use of the product.

At weaning, 100 piglets were distributed to 10 pens/treatment and 5 pigs/pen. Piglets remained in their assigned treatment groups from day 0 to 56. Fecal samples were collected at 21, 35 and 56 days of age to assess fecal populations of Escherichia coli, Lactobacillus spp., and Clostridium perfringens.

Weaning had an overall effect on the fecal microbiota (regardless of treatment), with the abundance of E. coli and Lactobacillus spp. post-weaning (sampled d 35 and d 56) higher (P < 0.05) than during the pre-weaning phase (sampled day 21). Conversely, C. perfringens abundance post-weaning was lower (P <0.05) than the pre-weaning phase (Figure 1).

There was an interactive effect between treatment and growth phase on E. coli and Lactobacillus spp. abundance. NeoPrime significantly reduced the abundance of E. coli compared to the control pre-weaning on day 21 (P < 0.05) and increased (P < 0.05) the Lactobacillus spp. population on day 56 compared to the control (Figure 2). Piglets supplemented with NeoPrime also showed an improvement in weight gain on days 35 and 56 (P = 0.09).

In this study, weaning had a striking effect on the fecal bacterial populations measured. NeoPrime supplementation decreased the negative effects of weaning on performance, which may be partially due to a beneficial modulatory effect on the gut microbiota that promoted beneficial bacteria.

Microbiota effect of each phase chart.
Figure 1: Weaning increased fecal E. coli and Lactobacillus spp. abundance and reduced C. perfringens abundance. Different letters within bacteria species denotes P < 0.05.

 

E. Coli Interaction Treatment X growth phase chart.
Figure 2: NeoPrime reduced the E. coli population on day 21 and increased Lactobacillus spp. on day 56. Different letters within bacteria species denotes P < 0.05.

 

NeoPrime Improved Commercial Nursery Swine Performance

A commercial swine operation in Mexico compared the benefits of supplementing nursery pigs with NeoPrime or a competitor product. From 27 to 78 days of age, 2,364 nursery pigs, with an average initial body weight of 8.2 kg, were fed diets supplemented with NeoPrime (1.5 kg/MT) or a competitor product intended to decrease unwanted gut bacteria. Feeding NeoPrime increased final body weight by 5.2 kg and reduced mortality by 1.5% (Figure 3). The cost per kg produced was also improved by using NeoPrime instead of the competitor product (Mex$12.36 vs. $14.87).

NeoPrime® increased body weight and reduced mortality chart.
Figure 3: NeoPrime increased body weight and reduced mortality in commercial nursery pigs.

 

Benefits of Supplementing Gestation and Farrowing Diets with NeoPrime

A commercial swine farm in Querétaro, Mexico, assessed the benefits of adding NeoPrime to sow gestation and lactation diets (2,400 sows). The farm was experiencing losses from influenza, PRRS and enterotoxigenic E. coli at the time of the study. NeoPrime was supplemented at a rate of 1.5 kg/MT (no other mycotoxin binders or yeast were added) and the results compared to the prior month.

NeoPrime supplemented at the end of pregnancy increased the number of replacement gilts that farrowed (98 vs. 91/110 gilts) which resulted in a substantial increase in potential revenue (Table 1). NeoPrime supplementation from farrowing to weaning also increased the number of sows weaned in good body condition by 6% and reduced sow mortality by 1.31% (Figure 4). Additionally, in sows supplemented with NeoPrime, piglet mortality decreased by 1% and weaning weight increased by 1.05 kg (Figure 5). Lower mortality reduced the cost per piglet by Mex$43.76 (Mex$437.43 vs. 481.19) which amounted to an annual value of approximately Mex$214,000, when accounting for the piglet number increase and the difference in piglet cost.

In this study, NeoPrime improved sow body condition and reduced mortality, which can lead to fewer non-productive sow days, an improved ovulation rate and less cross-fostering in farrowing. NeoPrime also increased potential revenue by increasing the number of gilts retained and reducing piglet mortality, lowering the cost of production per piglet.

 

Table 1: NeoPrime increased gilt retention by seven gilts, leading to an increase in potential revenue.

NeoPrime increased gilt retention and potential revenue chart.

 

NeoPrime® improved sow body condition and reduced mortality chart.
Figure 4: NeoPrime improved sow body condition and reduced mortality.

 

NeoPrime® reduced piglet mortality and improved body weight chart.
Figure 5: Supplementing sows with NeoPrime, reduced piglet mortality and increased piglet weaning weight.

 

In these case studies, NeoPrime was successful in driving profits naturally for swine producers by increasing revenue potential through reduced mortality, improved performance and reduced cost of production. NeoPrime achieves these effects by reducing the level of pathogenic challenge in the intestine, energizing intestinal epithelial cells and safely stimulating intestinal immunity. To experience the benefits of NeoPrime with your own trial, contact your local Amlan representative.

Calibrin®-Z Improves Broiler Performance Over Other Mycotoxin-Targeting Products

Calibrin®-Z logo and poultry farm infographic.

To prevent mycotoxicosis, poultry diets are often supplemented with feed additives marketed to reduce the toxic effects of dietary mycotoxins. These feed additives are based on a range of key ingredients, including mineral adsorbents (like our biotoxin binder Calibrin®-Z), yeast cell wall preparations, enzyme-based products and algae-based additives. Researchers at Instituto de Soluções Analíticas Microbiológicas e Tecnológicas (SAMITEC, Santa Maria, Brazil) conducted a comparison of these feed additives to determine the best option for maintaining performance when broilers are challenged with mycotoxin-contaminated feed.

Mycotoxin-Challenge Study Compares Commercial Feed Additive Efficacy

In a 21-day feeding challenge, researchers at SAMITEC evaluated the toxic effects of concurrent aflatoxin and fumonisin exposure in broilers. They also compared the effectiveness of various mycotoxin-targeting products, including Calibrin-Z, in reducing those toxic effects. Calibrin-Z undergoes specifically tailored, proprietary thermal processing that promotes the binding of a broad spectrum of biotoxins, including polar and nonpolar mycotoxins. To further help combat enteric disease, Calibrin-Z also binds bacterial exotoxins and endotoxins, such as those produced by Clostridium perfringens and Escherichia coli.

A total of 540 one-day-old male Cobb 500 broiler chicks were randomly assigned to one of six treatments (Table 1). Each treatment had nine replicates of 10 chicks per pen. The mycotoxin-challenged diet, which was fed to all treatment groups except the unchallenged control, contained aflatoxin B1, B2, G1 and G2 produced by Aspergillus parasiticus, and fumonisin B1 and B2 produced by Fusarium moniliforme. Aflatoxin B1 accounted for 93.8% of the aflatoxin added and fumonisin B1 made up 95.8% of the fumonisin.

Table 1. Mycotoxin-Challenge Study Dietary Treatments by Group

Mycotoxin-Challenge study dietary treatments by group chart.

Calibrin-Z Improves Feed Intake of Mycotoxin-Challenged Broilers

As expected, dietary exposure to aflatoxin and fumonisin reduced feed intake, with broilers consuming the mycotoxin-challenged control diet averaging 14% lower feed intake than the unchallenged control group (P ≤ 0.05, Figure 1). However, Calibrin-Z was able to recover some of this reduced feed intake and averaged 11% greater feed intake than the mycotoxin-challenged control group (P ≤ 0.05). Additionally, Calibrin-Z and the enzyme-based group had similar feed intake and were both greater than the yeast cell wall-based group (P ≤ 0.05). The algae-based group was numerically in between, and not significantly different, to the other product groups.

Feed intake chart in grams.
Figure 1. Feeding Calibrin®-Z in broiler diets contaminated with aflatoxin and fumonisin improved feed intake. Different letters indicate a significant difference between groups (P ≤ 0.05).

Mycotoxin-Challenged Broiler Weight Gain Improved By Calibrin-Z

Exposure to mycotoxin-contaminated feed also reduced broiler weight gain (Figure 2). After 21 days, broilers in the unchallenged control, Calibrin-Z and enzyme-based groups had greater body weight gain compared to the mycotoxin-challenged control group (P ≤ 0.05). Those three groups also had greater weight gain compared to the yeast cell wall- and algae-based groups which were not different to the mycotoxin-challenged control group.

Body weight gain chart for day 0-21.
Figure 2. Feeding Calibrin-Z in broiler diets contaminated with aflatoxin and fumonisin improved body weight gain. Different letters indicate a significant difference between groups (P ≤ 0.05).

Calibrin-Z Shows FCR Improvement Over Other Feed Additives

Broilers in the Calibrin-Z group had a feed conversion ratio (FCR) comparable to the unchallenged control group (P > 0.05) and a significantly better FCR than the yeast cell wall-based and algae-based groups (P ≤ 0.05, see Figure 3).

Feed conversion ratio chart for day 0-21.
Figure 3. Feeding Calibrin-Z in broiler mycotoxin-contaminated diets resulted in a feed conversion ratio similar to the unchallenged control group. Different letters indicate a significant difference between groups (P ≤ 0.05).

Calibrin-Z Proves Its Mycotoxin-Binding Efficacy

In this study, adding Calibrin-Z to mycotoxin-contaminated broiler diets led to greater body weight gain and a superior FCR compared to broilers fed diets containing yeast cell wall- or algae-based products. While there is no statistical difference between Calibrin-Z and enzyme-based products, there is a strong numerical difference between the two, with Calibrin-Z leading in both body weight gain and FCR. Broilers in the Calibrin-Z group had greater body weight gain and improved feed intake compared to broilers in the mycotoxin-challenged control group, and an FCR equivalent to the unchallenged control group.

Calibrin-Z has proved, once again, to be an effective mycotoxin binder that improves the performance of broilers fed mycotoxin-contaminated diets. In addition, Calibrin-Z had performance results that were equal to, or better than, other mycotoxin mitigation products in the market. For more information on this study, or to trial Calibrin-Z yourself, contact us.

Calibrin®-Z Excels in Broiler Study Comparing Mycotoxin-Targeting Feed Additives

Calibrin®-Z logo and poultry farm infographic.

Mycotoxin-contaminated feed is a constant challenge for poultry producers, made worse if environmental conditions favor the rapid growth of mycotoxin-producing fungi in the field or during storage. And if multiple mycotoxins have contaminated the feed, it can create a synergistic, or additive, effect, amplifying each mycotoxin’s negative outcome on poultry production.

Calibrin®-Z Binds Multiple Mycotoxins and More

Mitigating the effects of mycotoxin-contaminated feed is essential, because whether the effects on poultry are mild (due to long-term low-level exposure) or severe (from a high-level challenge), a decrease in performance (and profits) is usually inevitable. To diminish the effects of mycotoxicosis, poultry diets often include feed additives that target mycotoxins. Examples of these feed additives include Calibrin®-Z (our mineral-based biotoxin binder), yeast cell wall preparations, enzyme-based products and algae-based additives.

Unlike other mineral-based products, Calibrin-Z undergoes specifically tailored, proprietary thermal processing that promotes the binding of a broad spectrum of biotoxins, including polar and nonpolar mycotoxins. Calibrin-Z also binds bacterial exotoxins and endotoxins, such as those produced by Clostridium perfringens and Escherichia coli, to help combat enteric disease.

University of Missouri Study Compares Feed Additive Performance

To evaluate the performance of products marketed to mitigate mycotoxin-contaminated feed, researchers at the University of Missouri (Columbia, MO) evaluated the ability of commercial feed additives to reduce the combined toxic effects of concurrent aflatoxin B1 and fumonisin B1 exposure in poultry. In the 21-day feeding trial, 144 broiler chicks were randomly assigned to six treatment groups with 24 birds in each group (Table 1). Statistical significance for treatment comparisons was set at P < 0.10.

Table 1. Dietary Treatments by Group

Calibrin®-Z Aflatoxin B1, Fumonisin B1 and feed additive chart.

Similar Body Weight Gain for Calibrin-Z and Unchallenged Control Birds

The results showed that as expected, mycotoxin-contaminated feed significantly reduced broiler weight gain (Figure 1). However, Calibrin-Z was able to mitigate this performance loss. Birds fed the mycotoxin-challenged diet and Calibrin‑Z recorded statistically similar body weight gain as the non-challenged control birds (P = 0.35). This performance recovery was not seen to the same extent in challenged birds receiving the algae-, enzyme- or yeast cell wall‑based products, as birds from these groups gained significantly less weight than the non-challenged control group birds (P < 0.10). The weight gain of Calibrin-Z-supplemented birds was also 6 percent greater than the weight gain of enzyme-supplemented birds, 11 percent greater than the yeast cell wall group and 19 percent greater than the algae-based product group.

Calibrin®-Z body weight gain chart.
Different letters indicate a significant difference between groups (P < 0.10). Figure 1. Body weight gain of birds fed a diet containing two mycotoxins plus Calibrin-Z was statistically similar to that of birds receiving a diet free of mycotoxins.

Calibrin-Z Numerically Improved Feed Conversion

Feeding Calibrin-Z to mycotoxin-challenged broilers improved feed conversion by up to 10 points compared to diets supplemented with enzyme, yeast cell wall or algae-based products (Figure 2).  While not a statistical difference in this trial, these results represent a significant numerical difference in broiler production.

Calibrin®-Z feed conversion ratio chart.
Figure 2. All groups had statistically similar feed conversion, with Calibrin-Z numerically improving feed conversion compared to all groups except the unchallenged control.

This study showed that adding Calibrin-Z to aflatoxin- and fumonisin-contaminated feed enabled broiler chickens to maintain weight gain and feed conversion similar to birds fed a mycotoxin-free diet. The other commercial products did not improve bird performance to the same extent as Calibrin-Z in this study, demonstrating the production advantage Calibrin-Z delivers by binding multiple biotoxins and improving intestinal tract health. For more information on this study, or on the health and productivity benefits of adding Calibrin‑Z to your birds’ rations, contact us.

Varium® Rivals Zinc Bacitracin in Maintaining Broiler Intestinal Health

Varium® logo with broilers in the background.

In some countries, the use of zinc bacitracin as an antibiotic growth promoter (AGP) in poultry is restricted due to concern over the increase in multi-drug-resistant bacteria that do not respond to traditional antibiotic treatments. Restrictions in the use of AGPs in animal feeds like zinc bacitracin has spurred the development of natural AGP alternatives that keep birds healthy and growing efficiently.

Natural Performance Promotion

Varium® is a patented natural mineral-based feed additive that promotes efficiency and productivity in poultry. Unlike antibiotics that kill bacteria, the patented technology in Varium includes a synergistic formulation of ingredients that binds pathogenic bacteria and their toxins, provides an energy source for the growth of healthy and strong enterocytes and gently stimulates immunity cells. With multiple modes of action, Varium adds value for producers by replacing the need for multiple feed additives; it can provide the same benefits in one product thereby simplifying diet formulations and reducing costs.

Comparing Varium with Zinc Bacitracin

To demonstrate its effectiveness, Varium was directly compared to zinc bacitracin in a broiler study conducted by a university in Pakistan. In the trial, 180 Ross 308 chicks (10 chicks per pen, 6 pens per treatment) were randomly allocated to one of three treatment groups: control (0.01% zinc bacitracin), Varium 0.1 (0.1%) or Varium 0.15 (0.15%). The broilers were raised under normal production conditions, with the trial ending on day 35. Newcastle disease vaccine was administered to all birds on day 6 (intraocular and subcutaneous) and a booster (oral) was administered on day 21. Newcastle disease titers were measured on days 20 and 35 from 18 birds per treatment. Three birds per pen (18 total per treatment), randomly selected on day 35, and had small intestine morphology and bacterial counts in the small intestine and digesta measured.

Varium Protects Intestinal Health

The study showed that Varium was able to protect intestinal morphology better than zinc bacitracin. In Varium-fed broilers, a significant dose-response effect was observed for intestinal (jejunum) villus height and villi index (villus height to crypt depth) on day 35, with all Varium treatments significantly higher than the zinc bacitracin control (Figure 1). A similar dose response was observed with intestinal (jejunum) crypt depth; all Varium treatments were significantly lower than the control, and Varium 0.15 was significantly lower than Varium 0.1 (Figure 1).

Villus Height, Villi Index, Crypt Depth of broilers information.
Figure 1: Villus height, villi index and crypt depth of broilers fed either 0.01% zinc bacitracin (control) or Varium at 0.1 or 0.15%. Varium demonstrated a dose-response effect that indicated better ability to protect intestinal morphology than zinc bacitracin.

 

Varium was also able to protect the birds from necrotic enteritis to the same extent as zinc bacitracin. Necrotic enteritis was not found among any of the sampled birds on day 35. Lesion scores (0 to 4 scale) for the entire length of the small intestine were not different between treatments; however, Varium 0.1 had a better effect on intestinal elasticity than the other treatments.

Beneficial Bacteria Increase with Varium

Varium was able to promote colonization of beneficial bacteria while decreasing the population of pathogenic bacteria. Varium 0.1 had significantly more beneficial Lactobacilli than zinc bacitracin and Varium 0.15 had significantly more than all treatments (Figure 2). All Varium treatments decreased the population of Salmonella in the small intestine and digesta compared to zinc bacitracin (Figure 3).

Lactobacilli colonization of the small intestine and digesta information.
Figure 2: Lactobacilli colonization of the small intestine and digesta was improved when the broiler diet was supplemented with Varium.
Salmonella colonization of the small intestine and digesta information.
Figure 3: Salmonella colonization of the small intestine and digesta was significantly reduced when the broiler diet was supplemented with Varium.

A Better Immune Response

Varium also improved the immune response to vaccination. On day 20 and 35, Newcastle disease antibody titer (hemagglutination inhibition test) was significantly higher in all Varium treatments compared to zinc bacitracin. Previous research (contact Amlan for more details, info@amlan.com) has shown that feeding Varium during disease challenge can restore the expression of immune cells that are responsible for stimulation of an antigen-specific immune response and also increase phagocytic activity compared to the control group. This increased immune response, as well as the removal of bacterial toxins that can cause immunosuppression, are thought to be the reasons behind the increase in Newcastle disease antibody titers observed in the present study.

This study confirmed that Varium can be as effective as zinc bacitracin in promoting intestinal health. The doses of Varium at 0.1 and 0.15% performed equal to or better than zinc bacitracin for the parameters tested. For more information on how Varium can improve health, production efficiency and value, visit the Varium product page.

Pathogen Control Options for Antibiotic-Free Poultry Production

NeutraPath® Logo and Poultry Farm Info Graphic | Amlan International

Antibiotic-free (ABF) poultry production has its benefits — it increases market opportunities for producers and, perhaps more importantly, it helps reduce the emergence of antimicrobial resistant pathogens. But ABF production also brings with it a new set of challenges. One of the biggest is how to control the pathogens that reduce flock health and production efficiency, now that subtherapeutic levels of antibiotics can’t be used.

Stopping pathogens from entering the poultry house in the first place goes a long way in controlling disease outbreaks. But most pathogenic agents associated with common enteric poultry diseases are ubiquitous in the environment, meaning their management focuses more on control than eradication. In this post we discuss the importance of biosecurity and environmental management in controlling pathogens in ABF production systems. We also present data on NeutraPath®, a natural feed additive available in select international markets that has multiple modes of action against enteric pathogens.

Prevent Diseases Spreading

People are the biggest risk factor for introducing pathogens into a flock. For this reason, limiting visitors and wearing personal protective equipment in the barn are typically standard practices in poultry facilities. People traveling to the farm should also disinfect their shoes and vehicle floorboards when arriving and leaving the facility. Keeping rodents and insects out of the barn and preventing wild birds from contaminating open water sources are other key control points for effective biosecurity.

Create an Uninviting Environment for Pathogens

Water in the poultry barn can easily become a vector for microbial contamination. The nutrient-rich water lines and the warm environment of the poultry house are ideal growing conditions for bacteria and other pathogens. Therefore, water lines should be flushed regularly and cleaned between flocks, and water storage tanks routinely cleaned to prevent microbial growth.

Managing moisture and ammonia levels in poultry litter is also critical for reducing disease challenges and keeping birds healthy. This includes supplying adequate ventilation and regularly checking for water line leaks. Dry litter lessens the risk of disease, reduces morbidity and condemnations, and helps ammonia stay at acceptable levels. Windrowing the litter between flocks can help reduce the pathogen load because it heats the litter and allows the surrounding floor to dry out. Wet droppings due to poor intestinal health also increase moisture and ammonia in litter, which is another reason why supporting optimal intestinal health in birds is vital to production success.

NeutraPath®: A Natural Pathogen Control Product

As well as making the environmental conditions less favorable for pathogen growth, targeting the pathogens themselves is a key part of preventing enteric disease outbreaks in poultry. Traditionally, this was achieved by administering subtherapeutic levels of antibiotics, but natural, non-antibiotic products are now available for use in antibiotic-free production systems.

NeutraPath uses multiple modes of action to increase livability and improve feed conversion in antibiotic-free poultry. Using a proprietary and coactive blend of essential oils, fatty acids and Amlan’s proprietary mineral technology, NeutraPath reduces pathogenic bacterial load and colonization, and improves intestinal health and structural integrity, all of which contribute to improved performance and increased production yields.

The ability of NeutraPath to control pathogens has been proven in multiple studies, including in research published in Poultry Science. In the Poultry Science study, NeutraPath exhibited a potent antimicrobial effect against Salmonella enterica serovar Typhimurium strain PHL2020 and reduced its intestinal colonization. In another study, NeutraPath reduced ileal Clostridium perfringens populations compared to the challenged control (Figure 1). Feed conversion ratio and weight gain results ensued that were similar between NeutraPath and an in-feed antibiotic (BMD) and were significantly better than the challenged control (Figure 2).

NeutraPath® Reduced Necrotic Enteritis in Broilers Infographic | Amlan International
Figure 1: Ileal C. perfringens populations. 224 total birds. Source: Southern Poultry Research, Inc. Athens, GA.

NeutraPath® Day 0-28 Feed Conversion Ratio Infographic | Amlan International

NeutraPath® Day 0-28 Weight Gain Infographic | Amlan International
Figures 2 – 3: Feed conversion ratio and weight gain of necrotic enteritis-challenged broilers. 224 total birds. Source: Southern Poultry Research, Inc. Athens, GA.

 

NeutraPath doesn’t just perform under pathogen-challenged conditions, however. In a side-by-side commercial broiler house study for an integrated broiler producer in the southern United States (54,000 birds per house), NeutraPath performed better across all parameters measured, including a 0.56 percent increase in livability (Table 1).

NeutraPath® Improved Commercial Broiler Performance Infographic | Amlan International
Table 1: Comparative results of NeutraPath vs. control in a commercial broiler study.

Creating unfavorable environmental conditions for pathogens can help reduce enteric disease outbreaks in poultry. To further control pathogens, NeutraPath can be incorporated into rations to strengthen intestinal health and reduce the intestinal pathogen load. For more information on NeutraPath or to set up your own NeutraPath trial, contact info@amlan.com.

NeutraPath®: Natural Pathogen Control Using Feed Ingredient Synergy

NeutraPath Biology with Swine

The control of pathogens and disease is a recurring challenge for livestock and poultry producers, whether they use conventional or antibiotic-free production systems. Amlan is tackling the challenge of disease prevention with the development of a natural feed additive that combines multiple feed ingredients that help reduce bacterial pathogens and their toxins. NeutraPath®, a natural feed additive for all species, reduces the pathogenic bacterial load and colonization, while also improving intestinal health and structural integrity, all of which contribute to improved bird performance and production economics.

NeutraPath (available in select international markets) features a unique blend of essential oils, fatty acids and Amlan’s proprietary mineral technology. The product’s potent antibacterial formula was engineered to neutralize bacterial toxins, destabilize bacterial cell membranes and disrupt cell-to-cell communication between pathogenic bacteria, all while also improving intestinal health.

NeutraPath has been shown in various studies to have antibacterial properties against a variety of gram-negative and gram-positive bacterial pathogens. By reducing pathogenic bacterial intestinal colonization, NeutraPath improved feed conversion and intestinal health and reduced bacterial diarrhea, necrotic enteritis lesions, and mortality. Here we present a summary of some of the NeutraPath research, including data published in peer reviewed journals or presented at international scientific meetings. Contact info@amlan.com for more details of these studies.

Dual Effects: Disarming Pathogens and Reducing Their Prevalence
The antibacterial activity of NeutraPath against a variety of production-limiting pathogen species was demonstrated in both poultry and swine studies. In various broiler studies, birds challenged with either Salmonella enterica serovar Heidelberg, Salmonella enterica serovar Typhimurium or Clostridium perfringens had decreased prevalence and bacterial load of the pathogen in the ceca, cecal tonsils, cecal contents or cloacal swabs compared with the challenged control. There was also a fourfold reduction of alpha-toxin levels in the cecal contents of broilers challenged with C. perfringens compared with the challenged control (Figure 1).

Alpha-toxin levels info graphic.
Figure 1: Alpha-toxin levels in the cecal contents of broilers challenged with C. perfringens. Source: Southern Poultry Research, Inc., Athens, GA. 128 total birds.

In swine orally inoculated with F18+ enterotoxigenic E. coli (ETEC), feeding NeutraPath reduced the frequency of diarrhea, indicating a greater resistance to disease (He et al., 2022). Changes in the fecal microbiome and ileal mucosa microbiota composition suggested NeutraPath also helps maintain a desirable balance in the intestinal microbial ecosystem.

Collectively, these studies indicate that NeutraPath can selectively modulate gut microbiota homeostasis via exerting potent antibacterial effects against enteric pathogenic bacteria while preserving or promoting beneficial bacteria.

Healthier Swine and Poultry
The antibacterial effects of NeutraPath promote positive health benefits for poultry and swine. In broilers challenged with C. perfringens-induced necrotic enteritis in combination with Eimeria maxima infection, NeutraPath improved livability and necrotic enteritis-related lesion scores compared with challenged control birds (Figure 2). Additionally, using antibiotics instead of NeutraPath produced similar mortality rates and lesion scores as NeutraPath.

Mortality rates info graphic.
Lesion scores info graphic.
Figures 2 and 3: Necrotic enteritis-caused mortality rates and lesion scores in broilers. 240 total birds. Source: Southern Poultry Research, Inc. Athens, GA.

The data from the broiler studies indicate that NeutraPath can be used to help manage C. perfringens-induced necrotic enteritis in broilers. As mentioned earlier, NeutraPath was also shown to decrease the incidence of severe diarrhea in weaned pigs challenged with Enterotoxigenic E. coli (ETEC).

Enhanced Production Performance
NeutraPath was also able to improve production parameters in poultry and swine. In a summary of four similarly designed broiler studies that experimentally induced necrotic enteritis, NeutraPath showed better performance than the challenged control group and performed similarly to antibiotic-treated birds (Table 1). The results of these studies show that NeutraPath was comparable to an antibiotic in improving performance of broilers challenged with necrotic enteritis.

Necrotic Enteritis-challenged broiler performance info graphic.
Table 1: Comparison of necrotic enteritis-challenged broiler performance. Source: Southern Poultry Research Inc., Athens, GA. Birds were challenged with C. perfringens at 2 weeks of age and grown to day 28.

In the swine ETEC challenge study, compared to the control, pigs fed NeutraPath demonstrated improved growth during the last two weeks of the study with improvements in feed efficiency during days 14 to 21 post-inoculation. These studies demonstrate that NeutraPath can enhance growth performance in broilers and swine challenged with production limiting pathogens.

In these studies, the synergism of NeutraPath ingredients worked well to reduce pathogenic bacterial colonization, improve health parameters and enhance production performance in swine and poultry. For more information on NeutraPath or to set up your own NeutraPath trial, contact info@amlan.com.

An AGP Alternative That Really IS an Alternative

Varium logo with chickens in the background.

Source: ThePoultrySite.com, 5 Jan 2022

A natural feed additive that yields performance results comparable to AGP use? It really does exist. Varium® supports a healthy intestinal tract AND can help provide production economics similar to antibiotic-fed birds.

Read the full article from The Poultry Site.

An Antivirulence Approach to Controlling Bacteria: AGP Alternatives in Development at the Richard M. Jaffee Center for Applied Microbiology

Computer generated illustration of bacteria

The rise of multi-drug-resistant and mutant bacteria, which don’t respond to antibiotic treatment, is a concerning trend across the world. With the use of antibiotic growth promoters (AGPs) restricted in an increasing number of countries, livestock and poultry industries are looking for antibiotic-free alternatives that keep animals and birds healthy and productive. Amlan International’s Richard M. Jaffee Center for Applied Microbiology is developing industry-leading technology that helps livestock and poultry producers achieve peak antibiotic-free-performance.

Discovering new methods to combat the prevalence of resistant and mutant pathogens is just one of the topics scientists at the Richard M. Jaffee Center for Applied Microbiology are investigating. The research team at Amlan’s new state-of-the-art lab are using an antivirulence approach to control pathogens, which has also been a research focus for developing new antimicrobial drugs for humans.

Novel Alternative to Antibiotics

Unlike conventional antibiotics, antivirulence approach targets bacterial virulence factors and is aimed at disarming pathogens and modifying their behaviors by making them less harmful (less virulent) to the host. The likelihood for multi-drug-resistant and mutant bacteria is much less using this approach.

There are many options for controlling pathogens using an antivirulence approach. These antivirulence targets include:

  • Toxins
  • Secretion systems
  • Quorum sensing
  • Host-pathogen signaling
  • Adhesins
  • Biofilm formation
  • Siderophores
  • Immune evasion

Previous research at Amlan International showed exciting promise in the quorum sensing area. The Richard M. Jaffee Center for Applied Microbiology continues to conduct quorum sensing research as one component of the overall antivirulence approach to improving livestock and poultry health and production.

Bacteria Can Communicate

Quorum sensing is a communication system between bacterial cells that allows bacteria to regulate their activity in response to stimuli. This communication system involves bacteria releasing biochemicals into the environment which accumulate in the surrounding area until reaching a critical threshold concentration1. The biochemicals then bind to receptors on the bacteria, signaling gene expression.

Quorum sensing can control many functions in bacteria2 including:

  • Bacterial population
  • Virulent gene expression
  • Bioluminescence
  • Pigment generation
  • Bacterial swarming
  • Biofilm formation

Quorum Quenching Silences Bacteria

Quorum quenching is an approach which can disrupt the quorum sensing system of pathogenic bacteria, preventing cell-to-cell communication and the expression of virulence genes that could lead to their infection in the host. Quorum quenching products should reduce the chance of antibiotic resistance, since they are modifying bacteria behavior rather than killing them.

Calibrin®-Z Disrupts Quorum Sensing

Evidence of quorum quenching by Amlan’s Calibrin®‑Z biotoxin control product was published in the Journal of Agricultural and Food Chemistry. The research team at the Richard M. Jaffee Center for Applied Microbiology are continuing to build on these positive results and further quorum sensing research.

The previous study illustrated that in vitro, quorum sensing molecules can be separated out by adsorption or catalytically broken down into small fragments by Calibrin-Z. By reducing the concentration of quorum sensing biochemicals, the products can potentially disrupt the ability of pathogenic bacteria to produce toxins or reduce their virulence, since these functions are controlled through quorum sensing. 

Additionally, due to their stronger acidity, greater pore volume and greater surface area, in the same study Calibrin-Z performed better then silica, illite and kaolinite as catalysts/adsorbents in quorum sensing molecule removal.

When incubated with Vibrio harveyi, a bacterium that exhibits bioluminescence controlled via quorum signaling, Calibrin-Z reduced bacterial luminescence by 55% (from the area under the curve; Figure 1). While this demonstrated that interference in quorum sensing occurred, the bacterial numbers were not impacted, indicating the reduction in bioluminescence was achieved through quorum quenching and not by killing bacteria.

Bacterial luminescence graph.

Figure 1: Bacterial luminescence from a Vibrio harveyi culture treated with different concentrations of Calibrin-Z. Vibrio parahaemolyticus (Vp) was used as a non-luminescent negative control. At 10 mg/mL, Calibrin-Z reduced bacterial luminescence by 55% (area under the curve).

Quorum sensing is just one of the virulence factors being investigated by the research team at the Richard M. Jaffee Center for Applied Microbiology. Similarly, the antivirulence approach is just one of the next-gen technologies that is being developed in the lab to maximize livestock and poultry producer’s profits by improving the health and productivity of their flock or herd.

Stay tuned for more information about the innovative research conducted inside the Richard M. Jaffee Center for Applied Microbiology.

References

  1. Naik, S.P., Scholin, J., Ching, S., Chi, F. and Herpfer, M. (2018). Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials. Journal of Agricultural and Food Chemistry, 66 (1), 40-44. DOI: 10.1021/acs.jafc.7b03918
  2. Williams, P. (2007) Quorum Sensing, Communication and Cross Kingdom Signalling in the Bacterial World. Microbiology, 153 (12), 3923−3938. DOI: 10.1099/mic.0.2007/012856-0
X