Currently Viewing Posts in Intestinal Health

Poultry Science Study Shows NeutraPath® Targets Salmonella Isolate Using Multiple Methods

NeutraPath® logo with packaged poultry in background.

Source: Xue H, Wang D, Hargis BM, Tellez-Isaias G. Research Note: Virulence gene downregulation and reduced intestinal colonization of Salmonella enterica serovar Typhimurium PHL2020 isolate in broilers by a natural antimicrobial (NeutraPath™). Poultry Science. 2022 Mar 7:101822. https://doi.org/10.1016/j.psj.2022.101822.

Reducing intestinal Salmonella colonization in poultry is a key strategy in controlling Salmonella contamination of poultry products and, in turn, lowering the incidence of salmonellosis in people. Subtherapeutic levels of antibiotic growth promoters (AGP) can help control enteric pathogens like Salmonella, but restrictions in AGP use have created the need for antibiotic-free methods of reducing enteric pathogens in poultry.

A natural mineral-based feed additive that has previously shown action against Salmonella prevalence is NeutraPath® — a select blend of essential oils, fatty acids and a thermally processed enterosorbent mineral. A recent Poultry Science study investigated the antimicrobial effects of NeutraPath against Salmonella enterica serovar Typhimurium strain PHL2020 (ST-PHL2020) and the effects of NeutraPath on ST-PHL2020 virulence gene expression.

The study showed that NeutraPath exhibited a potent antimicrobial effect against ST-PHL2020 and reduced its intestinal colonization. NeutraPath also modulated ST-PHL2020 virulence network development by downregulating mRNA expression of key virulence genes and blocking expression of downstream effectors involved in Salmonella invasion. Together, the results show that NeutraPath has the potential to reduce ST-PHL2020 intestinal colonization in broilers and downregulate key ST-PHL2020 virulence genes.

Read the full article

Mycotoxicosis: The Cause and the Natural Solution

Mycotoxin with Calibrin-Z.

Mycotoxicosis in production animals can range from mild to severe, depending on the animal species, the mycotoxins present, their concentration, the exposure duration, the animal’s health status and environmental factors. When multiple mycotoxins contaminate feed, they create a synergistic or additive effect, which amplifies the negative effects of each mycotoxin.

In most cases, the effects of mycotoxicosis can be insidious, resulting from long-term exposure to low levels of mycotoxins, which eventually leaves animals susceptible to disease. All mycotoxins can cause mortality in severe cases.

Natural Mycotoxin Defense Is Possible

The best way to help protect animals from the negative health and production effects of mycotoxicosis is to stop the absorption of mycotoxins in the animal’s gut. All-natural, mineral-based Calibrin®-Z protects poultry and livestock from mycotoxins (and bacterial toxins), ensuring healthier animals, more efficient nutrient absorption, better animal performance, and improved yields.

Calibrin-Z is made from a single-source mineral produced in the USA, providing consistent quality and product traceability. The unique physical and chemical properties of Calibrin-Z, together with Amlan’s proprietary thermal-processing method, promote the binding of multiple biotoxins, including polar and nonpolar mycotoxins. Calibrin-Z also binds multiple bacterial exotoxins (e.g., Shiga-like toxin and NetB toxin) and endotoxins (e.g., LPS). Calibrin-Z is commercially available in select international markets and can be used alone or in combination with product from Amlan’s comprehensive range of feed additives.

Here we summarize the origin of the most significant mycotoxins affecting production animals and the health and costly production losses they can cause.

Aflatoxin

Aflatoxin is a polar (hydrophilic) mycotoxin produced by Aspergillus flavus and A. parasiticus. There are multiple aflatoxin metabolites, including B1, B2, G1 and G2, with aflatoxin B1 (AFB1) the most potent and frequent cause of aflatoxin toxicity. Aspergillus targets crops like corn, wheat, cereal grains and cottonseed; and under the right temperature and moisture conditions (particularly hot and humid conditions) can produce aflatoxin in the field, during harvest or during storage.

Aflatoxin targets the liver and can cause liver damage and tumors in clinical cases. Sub-clinical cases usually present with reductions in feed intake, weight gain and productivity. More severe cases in poultry and swine can result in gastrointestinal tract dysfunction, immune system suppression or hemorrhaging.

Zearalenone

One of the most common mycotoxins in poultry feed, zearalenone is a nonpolar (hydrophobic) mycotoxin produced by Fusarium. Zearalenone is found in crops like corn, barley and wheat and is often produced when temperatures alternate during grain maturation. Deoxynivalenol (DON) is regularly seen in combination with zearalenone in contaminated feed.

Zearalenone targets the reproductive organs of production animals (it mimics estrogen), causing severe reproductive dysfunction. Clinical cases in broilers will show comb and wattle enlargement and cloaca prolapse. Layers can have decreased egg production and quality, vent enlargement and cystic oviducts. Swine clinical cases can have reduced reproductive efficiency, increased abortion, fetal malformation and atrophy of the ovaries or testes.

Fumonisin

Fumonisin is also produced by Fusarium, but it targets different organs, including the lungs and liver. Fumonisin primarily affects corn and is produced by Fusarium under a variety of environmental conditions (not just hot and humid conditions).

Sub-clinical symptoms of fumonisin contamination may not be seen in poultry, but clinical signs include reduced feed intake and body weight, lower egg weight, poor shell quality and abnormal pigmentation. Swine have reduced feed intake and weight gain in sub-clinical cases and can develop lung edema, liver damage, kidney damage and heart enlargement in clinical cases.

Deoxynivalenol (DON)

Also called vomitoxin, DON is another mycotoxin produced by Fusarium. DON is one of the most common mycotoxins to contaminate crops like wheat, corn and barley. As its alternate name suggests, DON targets the gastrointestinal tract, causing vomiting, feed refusal and diarrhea in swine, all contributing to reduced weight gain and poor feed efficiency. Severe cases can result in organ hemorrhage.

T-2/HT-2

Trichothecene (T-2) and its metabolite HT-2 are produced by certain Fusarium strains in cereal grains. Unlike some of the other mycotoxins, Fusarium produces T-2 under moist and cold conditions (not hot conditions). T-2/HT-2 target the skin and epithelial cells, producing oral lesions that reduce both feed intake and weight gain. These mycotoxins can also suppress immunity and damage the pancreas, liver and heart.

Ochratoxin

Produced by both Penicillium and Aspergillus, ochratoxin contaminates crops like barley and wheat during storage more often than in the field. Sub-clinical symptoms of ochratoxin contamination include reduced feed intake and weight gain, while clinical signs include immunosuppression, liver damage (fatty liver) and kidney dysfunction, particularly in swine.

Why Choose Calibrin-Z?

Mycotoxicosis can reduce productivity and cause serious health effects, including mortality in severe cases. Mitigate mycotoxicosis with performance enhancing Calibrin-Z — a proven biotoxin binder that optimizes gut health, improves feed efficiency and boosts your bottom line, while meeting the social demands of consumers. For more information on mycotoxicosis or to view Calibrin-Z data from independent third-party trials, contact info@amlan.com.

Amlan Brings Value-Added Mineral Alternatives to Livestock Industry

Amlan team with Rural Radio Network logo graphic.

Source: Susan Littlefield, Rural Radio Network/KRVN, January 27, 2022

Oil-Dri® Corporation of America launched their first mineral-based product in 1941, and since then the range of unique minerals mined and processed by Oil-Dri have been used for many applications across diverse industries, including animal health. In an interview with Susan Littlefield from Rural Radio Network/KRVN, Amlan teammates Reagan Culbertson, Director of Strategic Branding and Communications, and Dr. Wade Robey, VP of Marketing and Product Development, discuss the history of the mineral technology that is the core of Amlan products. They also describe how Amlan’s mineral-based feed additives optimize gut health in poultry and livestock and improve production economics.

Listen to the interview here.

Poultry Producers’ Important Role in Reducing the Global Salmonellosis Challenge

Microscopic salmonella with Varium logo text graphic.

Salmonella is one of the most prevalent foodborne zoonotic pathogens worldwide. However, by using strategies that reduce the contamination of poultry products at the farm and processing plant levels, poultry producers and processors can play an important role in reducing the incidence of salmonellosis and the emergence of antimicrobial-resistant Salmonella strains.

Poultry-Related Salmonellosis

Salmonellosis is a common human foodborne illness and one of four key global causes of diarrheal diseases in people according to the World Health Organization. Poultry-related salmonellosis is typically caused by Salmonella spp. passing from poultry to people through contaminated eggs and meat. Poultry are often asymptomatic carriers, and their intestinal tracts serve as pathogen reservoirs, potentially leading to contamination of food products.

Salmonella Transmission

To enter the human food chain, Salmonella must first colonize the bird’s intestinal tract. After colonization, Salmonella can spread via horizontal transmission (bird to bird), contaminating the environment and the carcass during slaughter. Salmonella colonization of the cecum can also result in vertical transmission (parent to progeny) through contamination of the yolk, albumen and eggshell membranes.

Reducing Salmonella Contamination

Salmonella can contaminate meat products during processing, causing contaminated poultry carcasses to serve as a source of infection in consumers. Innovative technology provides processors with methods to reduce contamination at the poultry plant; however, control of Salmonella at the farm level is also an important step in reducing the risk of salmonellosis in people.

Antimicrobial-Resistant Salmonella Strains

Antimicrobial-resistant pathogens, which include strains of Salmonella, are a major concern for public health care worldwide. The U.S. Centers for Disease Control and Prevention (CDC) reported that over a three-year period, an average of 16% of all nontyphoidal Salmonella were resistant to at least one essential antibiotic.

The concern over antimicrobial resistance (in all pathogens, not just Salmonella) has led to a global effort to reduce the use of in-feed antibiotics in poultry production in an effort to slow the emergence of antimicrobial-resistant pathogens. This presents a challenge for poultry producers since they are still being urged to control Salmonella in the poultry barn to reduce contamination of meat during processing.

Reduce Salmonella with a Non-Pharmaceutical Solution

A natural feed additive that producers can use to help limit Salmonella in poultry is Varium® — a patented mineral-based product sold in Amlan’s international markets. Varium enhances multiple aspects of the intestinal environment, creating production results consistent with those observed with antibiotic growth promoter use. The patented technology in Varium includes a synergistic formulation of three ingredients with distinct modes of action: Varium reduces levels of pathogenic bacteria and their toxins in the intestinal lumen, acts as an enterocyte energy source, and stimulates the intestinal immune system to help birds naturally defend against pathogens.

Varium has been shown to agglutinate (adsorb) Salmonella spp., which can help prevent colonization of the intestinal wall and subsequent proliferation (Figure 1).

First Salmonella Close-Up Stage 8 Info Graphic | Amlan International
Second Salmonella Close-Up Stage 8 Info Graphic | Amlan International
Figure 1: Agglutination (adsorption) of Salmonella spp. by Varium. The scanning electron microscopy images were taken at 4 μ (top) and 20 μ (bottom). Images courtesy of the University of Georgia, Athens, GA.

Supporting the in vitro agglutination results, Varium also reduced Salmonella colonization in vivo in a 28-day broiler trial conducted at Imunova Análises Biológicas (Curitiba, Brazil). In this study, broilers challenged with Salmonella enterica serovar Enteritidis and supplemented with Varium had a 5-log reduction in cecal Salmonella levels on day 14, compared to the challenged control, and reduced overall Salmonella levels (Figure 2).

Salmonella and Public Health Concerns info graphic.
Figure 2. Compared to the challenged control, treatment with Varium rapidly reduced the bacterial load in the cecum as indicated by the Salmonella most probable number (MPN). Different letters indicate a significant difference between groups on day 14, and a main treatment effect of P = 0.0526 was also observed.

Salmonellosis and antimicrobial-resistant Salmonella strains are important global public health concerns. However, with the assistance of natural mineral-based feed additives like Varium, poultry producers can help reduce the Salmonella risks for consumers at the farming stage. To learn more about Varium, click here.

The Distinctive Properties of Our Biotoxin Binder Calibrin®-Z

Calibrin-Z binding with Amlan logo info graphic.

Proprietary mineral technology is the foundation for Amlan’s innovative value-added products for animal protein producers. In this article, we take an in-depth look into the mineral technology used in our all-natural feed additive Calibrin®-Z and its unique properties that are the Amlan difference.

Consistent, Controlled Mineral Supply

The physical and chemical properties of a mineral can differ depending on where it is mined. That is why — to ensure consistent quality — Amlan only uses a single-source mineral in our products. Amlan is vertically integrated as the animal health business of Oil-Dri® Corporation of America, allowing Amlan and Oil-Dri to control every step of the production process and reliably deliver safe, high-quality products.

Calibrin-Z: Our All-Natural Broad-Spectrum Biotoxin Control Product

Calibrin-Z protects poultry and livestock health and performance by binding intestinal pathogens, bacterial exotoxins and endotoxins and polar and nonpolar mycotoxins. It is composed of a single ingredient — our proprietary mineral technology, thermally processed to create the specific physical and chemical properties that give Calibrin-Z its powerful mode of action.

A Network of Interconnected Pores

The distinctive properties of Calibrin-Z include a high surface area and extensive porosity. More than 99% of Calibrin-Z’s total surface area is internal due to the product’s structural properties. This means that targeted molecules can migrate via interconnected networks of capillary channels towards internal binding sites. These physical features provide Calibrin-Z with a high adsorption capacity for binding a broad range of mycotoxins, bacterial pathogens and their toxins.

Layers Within Layers

The mineral in Calibrin-Z is a particular type of phyllosilicate (“phyllo” meaning sheet) and is primarily calcium montmorillonite with amorphous opal-CT lepispheres and other minor and trace minerals.

Phyllosilicates consist of silicon, oxygen, magnesium and water molecules, and either aluminum or iron atoms. The aluminum, iron or magnesium atoms form octahedron structures, whereas the silicon forms tetrahedrons. These formations give the mineral a nano-scale structure of a 2:1 layer of octahedrons between tetrahedrons. Between the 2:1 layers are interlayers of water molecules and cations (Figure 1). Various positively charged sites in the mineral structure — interlayer cations and broken edge octahedral units — provide the adsorption sites.

Structure of Mineral in Calibrin-Z Binding Info Graphic | Amlan International
Figure 1: A progressive view of the structure of the mineral in Calibrin-Z down to the nano-scale layers.

Proprietary Thermal Processing

Typical montmorillonites have water molecules between the mineral layers that make the pores and surfaces hydrophilic for adsorbing hydrophilic (polar) molecules (e.g., aflatoxins) but do not bind hydrophobic (nonpolar) molecules (e.g., zearalenone and fumonisin). However, the montmorillonite used in Calibrin-Z undergoes proprietary thermal processing that uses an optimized temperature and time to allow adsorption of hydrophilic and hydrophobic toxins (Figure 2).

Thermal Processing of Calibrin-Z Info Graphic | Amlan International
Figure 2: Thermal processing of Calibrin-Z allows binding of hydrophilic and hydrophobic molecules.

Thermal processing eliminates most of the water molecules from the mineral in Calibrin-Z, making it more hydrophobic. The process is carefully controlled since excessive heat that completely dries the mineral — removal of the interlayer water molecules — would destroy Calibrin-Z’s binding capabilities. The naturally occurring opal-CT lepispheres help maintain the layered sheet structure of the mineral during processing and provide Calibrin-Z’s high binding capacity (Figure 3). Amlan’s proprietary processing method also avoids the use of harmful chemicals typically used by other companies preserving a natural composition.

Structure and Processing of Calibrin-Z Info Graphic | Amlan International
Figure 3: Naturally occurring opal-CT lepispheres maintain Calibrin-Z’s structure during thermal processing (removal of a controlled amount of interlayer water molecules).

A Variety of Binding Mechanisms

Calibrin-Z’s binding forces include hydrophobic interactions, chelation, electrostatic attractions, hydrogen bonding and van der Waals forces. Thermal processing allows an interaction between both polar hydrophilic molecules and non-polar hydrophobic molecules and the inter-mineral layer. This is the method used to adsorb mycotoxins to Calibrin-Z.

Bacterial exotoxin binding to Calibrin-Z occurs through molecular ion exchange mechanisms. For example, a part of the Clostridium perfringens alpha-toxin electrostatically anchors (tethers) to either the positively charged broken-edge sites (exposed alumina octahedra) or the positively charged interlayer cations of Calibrin-Z.

Molecular conformation change mechanisms are also possible binding methods. Large exotoxins can distort their molecular structures or conformations to adsorb themselves onto macro-surfaces within the pore spaces.

Compatible With Nutrient Availability

While Calibrin-Z excels at binding biotoxins, its binding abilities do not interfere with the absorption of important nutrients in the diet. It is possible that some minor quantity of nutrients could temporarily be absorbed into Calibrin-Z’s pores. However, this is via weak thermodynamic and kinetic interactions that are readily reversible. Therefore, nutrients can travel in to and out of Calibrin-Z particles based on concentration gradients in the gastrointestinal tract.

A 42-day swine study conducted by SAMITEC in Brazil, examined the performance of pigs fed a common basal diet (Control) and Calibrin-Z included at 5 kg/MT, a level that is 10 times the recommended dose. Even at this very high inclusion rate, Calibrin-Z had no adverse effects on nutrient availability, supporting equivalent weight gain and feed conversion.

Body Weight and Calibrin-Z Info Graphic | Amlan International

The proprietary mineral technology used in Calibrin-Z is what sets it apart from other companies’ mineral-based products. For more information about Calibrin-Z and how it can help protect your animals from the deleterious effects of biotoxins, contact us at info@amlan.com.

Peer-Reviewed Study Shows Gut Health Benefits for Weaned Pigs Fed NeutraPath®

NeutraPath® for production efficacy in pigs logo graphic.

Source: Yijie He, Cynthia Jinno, Chong Li, Sara L Johnston, Hongyu Xue, Yanhong Liu, Peng Ji. Effects of a blend of essential oils, medium-chain fatty acids, and a toxin-adsorbing mineral on diarrhea and gut microbiome of weanling pigs experimentally infected with a pathogenic Escherichia coli. Journal of Animal Science. 100 (1), January 2022: skab365, https://doi.org/10.1093/jas/skab365.

 

Poor production efficiency and reduced resistance to bacterial disease are common issues for pigs during the weaning period. Traditionally, prophylactic antibiotics were used to help pigs through this stressful time; however, increasing regulations and consumer demands have reduced or eliminated the use of antibiotics in some swine production facilities. Therefore, natural alternatives are needed to help support pigs’ health and performance through this transition period.

In a paper published in the Journal of Animal Science, the authors (from UC-Davis and Amlan International) investigated the use of the Amlan product NeutraPath® as a natural support during weaning without antibiotics. NeutraPath is a formulated blend of functional feed additives and a toxin-binding mineral that has previously shown potent bactericidal and bacteriostatic effects in vitro, and efficacy against bacterial infections in broiler chickens. He et al., examined the effects of NeutraPath on growth, diarrhea incidence and the gut microbiome of enterotoxigenic E. coli-challenged weaned pigs.

The study found that NeutraPath reduced the frequency of diarrhea in ETEC-challenged pigs, indicating a greater resistance to disease. Additionally, changes in the fecal microbiome and ileal mucosa microbiota composition suggested NeutraPath may help maintain desirable balance in the intestinal microbial ecosystem. NeutraPath-fed pigs also had better performance during the recovery period. Collectively, the results demonstrated that NeutraPath has potential to play a key role in supporting pig health and performance during the weaning period as antibiotic use is decreased.

Read the paper here: https://doi.org/10.1093/jas/skab365.

A Q&A with Dr. Wade Robey

A text graphic with a profile picture of Dr. Wade Robey.

Meet Dr. Wade Robey, VP Marketing and Product Development, as he answers questions about Amlan, the industry and the science behind our products. In this short video, Wade discusses how Amlan’s mineral technology meets the needs of global poultry and livestock producers and their consumers while stressing the importance of a natural approach to this demand.

WATCH VIDEO

Binding Bacterial and Fungal Toxins

Calibrin-Z logo with chickens in background.

Source: Poultry World, February 25, 2022

One of the biggest challenges for the poultry industry, especially after the removal of in-feed antibiotics, is bacterial enteritis, and in particular, necrotic enteritis caused by pathogenic Clostridium perfringens. Add production losses associated with mycotoxin-contaminated feed, and you have two industry challenges that need a natural control solution.

Calibrin-Z from Amlan International provides natural protection against field challenges, optimizing animal performance and boosting your bottom line. It is a highly efficacious, mineral-based feed additive that adsorbs a broad spectrum of bacterial toxins and mycotoxins in the intestinal tract of chickens. Unlike comparable products, Calibrin-Z binds both polar and nonpolar mycotoxins as well as bacterial toxins like alpha-toxin and NetB toxin that are produced by C. perfringens.

Read more here.

PoultryWorld article page 1

PoultryWorld article page 2

Amlan International North American Product Portfolio Meets Producer Needs

Amlan North American products with logos text graphic.

Amlan International is excited to offer our North American customers an exclusive portfolio of mineral-based feed additives that support gut health and improve the sustainability of poultry and livestock production. The North American portfolio expands our efforts to support optimal intestinal health in protein-producing animals around the world.

Consumers in North America, like global consumers, demand high-quality animal protein raised without antibiotics. These consumer preferences, coupled with concerns about microbial resistance, have put producers under pressure to reduce the use of in-feed antibiotics. Consequently, North American producers and vertical integrators are seeking cost-effective, non-antibiotic, natural feed additives that support feed conversion and optimal intestinal health. Their search ends with our North American product range that can help with these challenges.

Our mineral-based feed additives offer multiple advantages for animal protein producers. The products support optimal gut health and meet the demands for cleaner food while reducing the inputs needed to raise production animals, helping to decrease the cost and environmental impact of poultry and livestock production.

Our North American sales and technical service team, led by Heath Wessels, Director of Sales and Technical Service for North America, is eager to partner with top-tier producers to help them achieve their production goals by integrating Amlan products into their operations. “Our natural feed additives are formulated to have strong synergy with each other for supporting optimal gut health,” said Heath. “We offer individual product solutions or can recommend product combinations for maximum results.”

The new product line will only be available for sale in North America but will be offered with the same excellence and reliability that global producers know and trust from our international product offerings. Amlan is vertically integrated as the animal health business of Oil-Dri® Corporation of America, allowing Amlan and Oil-Dri to control every step of the production process and reliably deliver safe, high-quality single-sourced products from company-owned mines.

The North American product portfolio strengthens our commitment to leading the industry in supplying natural feed additives that support animal intestinal health and add value for producers. Meet our products below, and if you have any questions about our North American product portfolio, please contact info@amlan.com.

Amlan North American Product Portfolio Text Graphic | Amlan International
X