Currently Viewing Posts Tagged Poultry

Pathogen Control Options for Antibiotic-Free Poultry Production

NeutraPath® logo and poultry farm in background.

Antibiotic-free (ABF) poultry production has its benefits — it increases market opportunities for producers and, perhaps more importantly, it helps reduce the emergence of antimicrobial resistant pathogens. But ABF production also brings with it a new set of challenges. One of the biggest is how to control the pathogens that reduce flock health and production efficiency, now that subtherapeutic levels of antibiotics can’t be used.

Stopping pathogens from entering the poultry house in the first place goes a long way in controlling disease outbreaks. But most pathogenic agents associated with common enteric poultry diseases are ubiquitous in the environment, meaning their management focuses more on control than eradication. In this post we discuss the importance of biosecurity and environmental management in controlling pathogens in ABF production systems. We also present data on NeutraPath®, a natural feed additive available in select international markets that has multiple modes of action against enteric pathogens.

Prevent Diseases Spreading

People are the biggest risk factor for introducing pathogens into a flock. For this reason, limiting visitors and wearing personal protective equipment in the barn are typically standard practices in poultry facilities. People traveling to the farm should also disinfect their shoes and vehicle floorboards when arriving and leaving the facility. Keeping rodents and insects out of the barn and preventing wild birds from contaminating open water sources are other key control points for effective biosecurity.

Create an Uninviting Environment for Pathogens

Water in the poultry barn can easily become a vector for microbial contamination. The nutrient-rich water lines and the warm environment of the poultry house are ideal growing conditions for bacteria and other pathogens. Therefore, water lines should be flushed regularly and cleaned between flocks, and water storage tanks routinely cleaned to prevent microbial growth.

Managing moisture and ammonia levels in poultry litter is also critical for reducing disease challenges and keeping birds healthy. This includes supplying adequate ventilation and regularly checking for water line leaks. Dry litter lessens the risk of disease, reduces morbidity and condemnations, and helps ammonia stay at acceptable levels. Windrowing the litter between flocks can help reduce the pathogen load because it heats the litter and allows the surrounding floor to dry out. Wet droppings due to poor intestinal health also increase moisture and ammonia in litter, which is another reason why supporting optimal intestinal health in birds is vital to production success.

NeutraPath®: A Natural Pathogen Control Product

As well as making the environmental conditions less favorable for pathogen growth, targeting the pathogens themselves is a key part of preventing enteric disease outbreaks in poultry. Traditionally, this was achieved by administering subtherapeutic levels of antibiotics, but natural, non-antibiotic products are now available for use in antibiotic-free production systems.

NeutraPath uses multiple modes of action to increase livability and improve feed conversion in antibiotic-free poultry. Using a proprietary and coactive blend of essential oils, fatty acids and Amlan’s proprietary mineral technology, NeutraPath reduces pathogenic bacterial load and colonization, and improves intestinal health and structural integrity, all of which contribute to improved performance and increased production yields.

The ability of NeutraPath to control pathogens has been proven in multiple studies, including in research published in Poultry Science. In the Poultry Science study, NeutraPath exhibited a potent antimicrobial effect against Salmonella enterica serovar Typhimurium strain PHL2020 and reduced its intestinal colonization. In another study, NeutraPath reduced ileal Clostridium perfringens populations compared to the challenged control (Figure 1). Feed conversion ratio and weight gain results ensued that were similar between NeutraPath and an in-feed antibiotic (BMD) and were significantly better than the challenged control (Figure 2).

NeutraPath® Reduced Necrotic Enteritis in Broilers Infographic | Amlan International
Figure 1: Ileal C. perfringens populations. 224 total birds. Source: Southern Poultry Research, Inc. Athens, GA.

NeutraPath® Day 0-28 Feed Conversion Ratio Infographic | Amlan International

NeutraPath® Day 0-28 Weight Gain Infographic | Amlan International
Figures 2 – 3: Feed conversion ratio and weight gain of necrotic enteritis-challenged broilers. 224 total birds. Source: Southern Poultry Research, Inc. Athens, GA.

 

NeutraPath doesn’t just perform under pathogen-challenged conditions, however. In a side-by-side commercial broiler house study for an integrated broiler producer in the southern United States (54,000 birds per house), NeutraPath performed better across all parameters measured, including a 0.56 percent increase in livability (Table 1).

NeutraPath® Improved Commercial Broiler Performance Infographic | Amlan International
Table 1: Comparative results of NeutraPath vs. control in a commercial broiler study.

Creating unfavorable environmental conditions for pathogens can help reduce enteric disease outbreaks in poultry. To further control pathogens, NeutraPath can be incorporated into rations to strengthen intestinal health and reduce the intestinal pathogen load. For more information on NeutraPath or to set up your own NeutraPath trial, contact info@amlan.com.

Exploring Coccidiosis Control Options, Including a New Natural Alternative

Phylox Feed logo with poultry house in background.

The negative impact that coccidiosis has on bird health and production economics make it a constant challenge for poultry producers. Total eradication of Eimeria species from the poultry house is unlikely, so producers focus instead on suppressing coccidia to prevent subclinical disease performance loss, or worse, a clinical outbreak.

There are multiple options available for managing coccidiosis in poultry, including vaccination, and anticoccidials (synthetic chemicals and ionophores), although producers desire to move away from pharmaceutical solutions or harsh chemical additives, and concerns regarding resistance persist. A new natural alternative to anticoccidial drugs and vaccines — that provides equivalent performance — is Phylox® Feed. In this post, we provide an overview of each coccidiosis control method and share data on the comparable efficacy of Phylox.

Vaccines Stimulate Immunity Against Select Eimeria Strains

Administered to day-old chicks, vaccines targeted to specific Eimeria species stimulate the bird’s immune system and provide some immunity before they are exposed to wild-type Eimeria. Vaccination also aims to reduce the severity of coccidiosis symptoms if infections occur. However, live virulent vaccines — and to a lesser extent live attenuated ones — can still cause damage to the intestine that can affect performance that has to be overcome with sufficient grow out time and compensatory gain. It is also important to note that birds are also not protected against all Eimeria strains, just those included in the vaccine dose itself.

Anticoccidial Chemicals Work Well, But May Promote Drug-Resistant Strains

There are multiple anticoccidial drugs available that are made from synthetic chemicals, all of which have different modes of action. Commonly used prophylactically to prevent outbreaks, these chemicals disrupt the Eimeria life cycle by working as either a coccidiostat or a coccidiocide. While they are effective, extended use of most anticoccidial chemicals can promote the emergence of drug-resistant Eimeria strains. Different programs can be used to help slow or stop resistance, such as bio-shuttle or rotation programs. Use of anticoccidial chemicals may also require a withdrawal period prior to slaughter.

Ionophores Are Effective — If Their Use Is Permitted

Ionophores are produced by the fermentation of microorganisms, and unlike anticoccidial chemicals, the mode of action of all ionophores is similar. They form a complex with ions (e.g., calcium, sodium, potassium) and transport this complex across the Eimeria cell membrane. This alters the electrochemical gradient and the cell dies. Ionophores are not effective against all coccidia life cycle stages. They can be used long-term and ionophore/synthetic chemical combination anticoccidials are available in some markets.

Ionophores also have some antibacterial activity, which has led to their classification as antibiotics in some regions. This has meant restriction of ionophore use in antibiotic-free production systems in those areas.

A Natural Feed Additive That Addresses the Shortcomings of Other Anticoccidials

Natural feed additives are available for producers looking for pharmaceutical-free anticoccidial solutions that can be used in a “no-antibiotics-ever” (NAE) production system. Amlan International recently launched Phylox Feed (available in select international markets), a natural alternative to anticoccidial drugs and vaccines. Phylox can be effective in a rotation strategy when resistance is a concern and can also be used with Amlan’s mineral-based products to help maintain gut health and improve efficiency.

Phylox is a synergistic blend of antiprotozoal phytochemicals that have multiple modes of action against the Eimeria life cycle. These actions include disrupting the Eimeria cell membrane and preventing oocyst sporulation and replication. Phylox also energizes host intestinal cells to create a strong intestinal barrier to resist disease and lightly primes the immune system by enhancing antigen presentation.

Phylox Exhibits Comparable Efficacy to Other Control Methods

In multiple third-party trials, including in broilers raised in floor pens, Eimeria-challenged broilers fed Phylox had equivalent or numerically improved performance compared to broilers administered industry-standard anticoccidials. This included vaccination, a bio-shuttle program, as well as when anticoccidial chemicals and ionophores were tested.

Southern Poultry Research (Athens, GA) compared the relative efficacy of Phylox with a chemical coccidiostat (nicarbazin) and an ionophore (salinomycin) in broilers challenged with Eimeria species. Phylox showed equivalent feed conversion and coccidia lesion scores compared to the commercially available coccidiostats.

Feed Conversion Rate Info Graphic | Amlan International
Coccidial Lesion Scores Info Graphic | Amlan International

Similarly, in a study at the University of Arkansas, broilers raised in floor pens and fed Phylox had improved key performance indicators compared to the challenged control. Phylox also showed a numeric performance improvement in body weight compared to all tested industry anticoccidial standards, including vaccination and bio-shuttle with salinomycin, and statistically heavier body weight when compared to the treatment receiving an anticoccidial vaccine alone.

Additionally, Phylox did not interfere with vaccine efficacy when fed concomitantly, as Phylox provided equivalent results for all measured variables when it replaced salinomycin in a bio-shuttle program for broilers. The performance of Phylox when fed on top of vaccination, and also in replacement for Salinomycin in a bio-shuttle program were important findings in this study as they demonstrated that Phylox is effective in preventing coccidial reinfection in poultry either through a reduction in oocyst shedding, or via the degradation of ingested oocysts in the gastrointestinal track before they are able to cause a significant incidence of the disease.

Average Body Weight Gain Info Graphic | Amlan International
Mortality-adjusted Feed Conversion Info Graphic | Amlan International

Phylox Feed fills the gaps that are missing from other coccidiosis control methods: it can be used in NAE programs, has no withdrawal requirement, won’t promote the emergence of drug-resistant coccidia and isn’t targeted to only specific Eimeria strains. Phylox can also have value in broiler breeder and/or table egg pullet replacement programs to prevent significant disease breakthroughs during the development of bird natural immunity. For more information on how to incorporate Phylox into your coccidiosis control program, contact info@amlan.com.

Poultry Science Study Shows NeutraPath® Targets Salmonella Isolate Using Multiple Methods

NeutraPath® logo with packaged poultry in background.

Source: Xue H, Wang D, Hargis BM, Tellez-Isaias G. Research Note: Virulence gene downregulation and reduced intestinal colonization of Salmonella enterica serovar Typhimurium PHL2020 isolate in broilers by a natural antimicrobial (NeutraPath™). Poultry Science. 2022 Mar 7:101822. https://doi.org/10.1016/j.psj.2022.101822.

Reducing intestinal Salmonella colonization in poultry is a key strategy in controlling Salmonella contamination of poultry products and, in turn, lowering the incidence of salmonellosis in people. Subtherapeutic levels of antibiotic growth promoters (AGP) can help control enteric pathogens like Salmonella, but restrictions in AGP use have created the need for antibiotic-free methods of reducing enteric pathogens in poultry.

A natural mineral-based feed additive that has previously shown action against Salmonella prevalence is NeutraPath® — a select blend of essential oils, fatty acids and a thermally processed enterosorbent mineral. A recent Poultry Science study investigated the antimicrobial effects of NeutraPath against Salmonella enterica serovar Typhimurium strain PHL2020 (ST-PHL2020) and the effects of NeutraPath on ST-PHL2020 virulence gene expression.

The study showed that NeutraPath exhibited a potent antimicrobial effect against ST-PHL2020 and reduced its intestinal colonization. NeutraPath also modulated ST-PHL2020 virulence network development by downregulating mRNA expression of key virulence genes and blocking expression of downstream effectors involved in Salmonella invasion. Together, the results show that NeutraPath has the potential to reduce ST-PHL2020 intestinal colonization in broilers and downregulate key ST-PHL2020 virulence genes.

Read the full article

Poultry Producers’ Important Role in Reducing the Global Salmonellosis Challenge

Microscopic salmonella with Varium logo text graphic.

Salmonella is one of the most prevalent foodborne zoonotic pathogens worldwide. However, by using strategies that reduce the contamination of poultry products at the farm and processing plant levels, poultry producers and processors can play an important role in reducing the incidence of salmonellosis and the emergence of antimicrobial-resistant Salmonella strains.

Poultry-Related Salmonellosis

Salmonellosis is a common human foodborne illness and one of four key global causes of diarrheal diseases in people according to the World Health Organization. Poultry-related salmonellosis is typically caused by Salmonella spp. passing from poultry to people through contaminated eggs and meat. Poultry are often asymptomatic carriers, and their intestinal tracts serve as pathogen reservoirs, potentially leading to contamination of food products.

Salmonella Transmission

To enter the human food chain, Salmonella must first colonize the bird’s intestinal tract. After colonization, Salmonella can spread via horizontal transmission (bird to bird), contaminating the environment and the carcass during slaughter. Salmonella colonization of the cecum can also result in vertical transmission (parent to progeny) through contamination of the yolk, albumen and eggshell membranes.

Reducing Salmonella Contamination

Salmonella can contaminate meat products during processing, causing contaminated poultry carcasses to serve as a source of infection in consumers. Innovative technology provides processors with methods to reduce contamination at the poultry plant; however, control of Salmonella at the farm level is also an important step in reducing the risk of salmonellosis in people.

Antimicrobial-Resistant Salmonella Strains

Antimicrobial-resistant pathogens, which include strains of Salmonella, are a major concern for public health care worldwide. The U.S. Centers for Disease Control and Prevention (CDC) reported that over a three-year period, an average of 16% of all nontyphoidal Salmonella were resistant to at least one essential antibiotic.

The concern over antimicrobial resistance (in all pathogens, not just Salmonella) has led to a global effort to reduce the use of in-feed antibiotics in poultry production in an effort to slow the emergence of antimicrobial-resistant pathogens. This presents a challenge for poultry producers since they are still being urged to control Salmonella in the poultry barn to reduce contamination of meat during processing.

Reduce Salmonella with a Non-Pharmaceutical Solution

A natural feed additive that producers can use to help limit Salmonella in poultry is Varium® — a patented mineral-based product sold in Amlan’s international markets. Varium enhances multiple aspects of the intestinal environment, creating production results consistent with those observed with antibiotic growth promoter use. The patented technology in Varium includes a synergistic formulation of three ingredients with distinct modes of action: Varium reduces levels of pathogenic bacteria and their toxins in the intestinal lumen, acts as an enterocyte energy source, and stimulates the intestinal immune system to help birds naturally defend against pathogens.

Varium has been shown to agglutinate (adsorb) Salmonella spp., which can help prevent colonization of the intestinal wall and subsequent proliferation (Figure 1).

First Salmonella Close-Up Stage 8 Info Graphic | Amlan International
Second Salmonella Close-Up Stage 8 Info Graphic | Amlan International
Figure 1: Agglutination (adsorption) of Salmonella spp. by Varium. The scanning electron microscopy images were taken at 4 μ (top) and 20 μ (bottom). Images courtesy of the University of Georgia, Athens, GA.

Supporting the in vitro agglutination results, Varium also reduced Salmonella colonization in vivo in a 28-day broiler trial conducted at Imunova Análises Biológicas (Curitiba, Brazil). In this study, broilers challenged with Salmonella enterica serovar Enteritidis and supplemented with Varium had a 5-log reduction in cecal Salmonella levels on day 14, compared to the challenged control, and reduced overall Salmonella levels (Figure 2).

Salmonella and Public Health Concerns info graphic.
Figure 2. Compared to the challenged control, treatment with Varium rapidly reduced the bacterial load in the cecum as indicated by the Salmonella most probable number (MPN). Different letters indicate a significant difference between groups on day 14, and a main treatment effect of P = 0.0526 was also observed.

Salmonellosis and antimicrobial-resistant Salmonella strains are important global public health concerns. However, with the assistance of natural mineral-based feed additives like Varium, poultry producers can help reduce the Salmonella risks for consumers at the farming stage. To learn more about Varium, click here.

Consumer Demand Driving Natural Feed Solutions

Poultry barn with Amlan logo text graphic.

Source: Amie Simpson, Brownfield Ag News, January 28, 2022

“Increasing regulation and strong consumer demand are creating a growing market for natural animal protein production solutions,” commented Dr. Wade Robey, our VP of Marketing and Product Development, in a recent interview with Amie Simpson from Brownfield Ag News. Wade also discussed Amlan’s introduction of natural mineral-based feed additives into the US market and the growth opportunities this presents for Amlan in 2022. Read more here.

Managing Gut Health for Antibiotic-Free Chicken

Fred Kao photo with chicken barn background graphic.

Source: Red River Farm Network, January 28, 2022

An increasing market sector around the world. That’s the prediction for the no-antibiotic-ever market provided by Fred Kao, Vice President of Global Sales for Amlan, during his recent interview with Red River Farm Network. Fred also discussed the competitiveness of Amlan’s mineral as a stand-alone product. Read the full story here.

Exploring Necrotic Enteritis: Cause, Effects and Solutions

Computer-generated illustration of necrotic enteritis.

Necrotic enteritis is a common infectious disease that costs the poultry industry billions of dollars each year. With more and more poultry production systems moving toward the global objective of reduced in-feed use of antibiotics for growth promotion, maintaining a healthy intestinal environment now relies more heavily on other management methods to reduce the risk of necrotic enteritis development. Keep reading to learn more about the origins of necrotic enteritis, the relationship between necrotic enteritis and coccidiosis, and management of the disease risk in ABF production systems.

C. perfringens: The Cause of Necrotic Enteritis

Necrotic enteritis is caused by Clostridium perfringens types A and C: gram-positive, spore-forming anerobic bacteria. C. perfringens can be found throughout the poultry house environment and has spores which, under the right environmental conditions, can survive for long periods outside the bird. The normal microbiota of the bird contains C. perfringens, so its presence alone doesn’t necessarily indicate an issue. Instead, disease occurs when predisposing conditions in the bird cause overgrowth of the pathogen. There are multiple factors that can contribute to C. perfringens overgrowth including diet changes, immune status and stress, intestinal pathophysiology and concurrent infection with coccidiosis.

Multiple exotoxins can be produced by C. perfringens, including alpha-toxin and necrotic enteritis toxin B-like toxin (NetB). Alpha-toxin is cytotoxic to endothelial cells, red blood cells, white blood cells and platelets, whereas NetB toxin forms pores in cell membranes that allows electrolytes to rupture cells, causing cell death and necrotic lesions in the small intestinal mucosa. These two toxins are known to have a role in necrotic enteritis development.

Impaired Nutrient Adsorption

In healthy birds, the epithelium and mucus layer of the intestine form a selective barrier between internal tissues and the external environment (the intestinal lumen). The natural barrier allows nutrients through the intestinal wall but not pathogens and their biotoxins. When there is an overgrowth of C. perfringens, there is a breakdown of the defensive barrier. The damage to the intestinal wall hinders nutrient digestion and absorption and can allow toxins to enter the circulatory system.

Necrotic enteritis can present as either clinical or subclinical disease. The clinical form is characterized by high mortality, whereas subclinical disease causes decreased weight gain and increased feed conversion ratio (FCR). The increased FCR is due to the reduced nutrient digestibility and adsorption, resulting in compensatory feed intake.

Coccidiosis Can Increase Necrotic Enteritis Incidence

Coccidiosis is another common disease in poultry that causes a significant negative economic impact on production. It is an enteric disease caused by parasitic protozoa in the Eimeria genus. Part of the Eimeria life cycle includes invading intestinal epithelial cells, damaging the intestinal wall barrier. The damage that coccidia cause to intestinal epithelial cells promotes invasion by C. perfringens (as well as other pathogens), increasing the incidence of necrotic enteritis.

Necrotic Enteritis in Antibiotic-Free Production

Managing necrotic enteritis in an ABF production system requires detailed strategies including the use of vaccinations, diagnostic tools and natural feed additives. In some production systems, ionophores used to control coccidiosis may also be eliminated, which further heightens the importance of other management practices that keep birds free of diseases like coccidiosis and necrotic enteritis.

Management practices, such as biosecurity, sanitation, water quality and air quality, also require increased planning and monitoring in ABF systems. Reduced ventilation, increased litter moisture and poor husbandry can increase the incidence of necrotic enteritis. The quality and sanitation of eggs in the hatchery also needs to be managed well in ABF systems, so that birds have a healthy start to life.

Necrotic Enteritis Control Solutions

Along with management best practices, natural feed additives such as Varium® and Calibrin®-Z are available to help reduce the incidence of necrotic enteritis. Varium, a natural patented mineral-based feed formulation, can reduce challenges from pathogenic bacteria and their toxins, strengthen the intestinal barrier and activate the innate immune system to naturally defend against disease. In high challenge environments, Calibrin-Z, a broad spectrum biotoxin control feed additive, can be used on top of Varium to reduce the level of pathogens in the intestines that cause mortality, wet droppings, reduced feed efficiency and damage the integrity of the intestine.

Necrotic enteritis is a challenging disease for poultry producers, particularly those using an ABF production system. However, with best practice management strategies and inclusion of feed additives that promote intestinal health and function, poultry flock health can be improved, thereby reducing the risk of disease and maximizing production efficiency. To learn more about necrotic enteritis, keep checking the Education Center for other posts in the necrotic enteritis series.

Reference

Chi, F. A Viable Adjunct or Alternative to Antibiotics: Meta-Analysis of Broiler Research Shows Natural Growth Promoter Delivers Feed Efficiency Equal to Antibiotics, Amlan International. https://amlan.com/product-category/feed-efficiency/

ABF Poultry Production Best Practice Series: Water Quality

Left side of a chicken's head with infographic.

In poultry production, water is considered the most important nutrient by far, yet water quality is often overlooked. Broilers typically consume at least 1.5 pounds more water than they eat in feed, so it’s important to have water that is low in microbial contamination with acceptable mineral levels. Monitoring water quality is particularly important in antibiotic-free (ABF) production systems to keep birds as healthy and profitable as possible. Here, we take a closer look at what our industry experts consider water quality best practices for ABF poultry producers, as part of our series on strategies for producing antibiotic-free poultry.

Testing Water Quality

Samples should be collected regularly to assess water quality, as the status can often change. Our industry experts recommend testing water at least annually to determine if is safe for birds to drink and if there are any issues that need correcting. Water quality should be assessed regardless of the source (i.e., municipal, well, pond), as even city water could have issues that can affect bird performance. Both the microbial contamination (e.g., E. coli) and mineral content (e.g., iron and sodium) of the water sample should be tested.

Microbial Contamination

Water can be a vector for bacteria and other pathogens, leading to significant health issues and production losses. A poultry house water line provides ideal growing conditions for pathogens as the water is often nutrient rich and in a warm environment. The risk of microbial contamination can also increase if flood water enters ponds or wells. Wild geese and ducks could also be a source of pathogens, if the water supply is from surface water (a pond).

Microbial contamination can lead to the formation of biofilm (slime) on the surface. Biofilm is an aggregate of microorganisms connected by an extracellular matrix that is attached to a surface (e.g., pipes and storage containers). As well as a health issue, biofilm can also block nipples and reduce water flow.

Mineral Composition

Excessive mineral content, particularly sodium and iron, can be an issue with some water sources. Too much sodium can cause flushing in the birds and iron can form deposits and clog the water lines. Hardness of the water (calcium and magnesium concentration) can also cause scale to build up in the lines and cause issues such as leaking nipples. Water leaking onto the litter can create further problems such as increased ammonia production.

If minerals levels are high, nutritionists may be able to formulate for mineral imbalances. However, this is usually more expensive than treating the water, particularly for large production companies where producing a specialty diet for a single location is not economically feasible. Sand filters could be used to remove some of the iron, however reverse osmosis or a larger filtration system may be needed for removing other minerals.

Cleaning Water Lines

Water lines should be flushed regularly, particularly after using water-based supplements. The lines should also be thoroughly cleaned between flocks to remove biofilm and scale buildup. Typically, hydrogen peroxide or chlorine-based products are used. The selected products should be appropriate for the application and the manufacturer’s directions followed to ensure adequate cleaning and to prevent damage to the water lines. After cleaning, the lines should be flushed well. Water storage tanks should also be cleaned regularly to prevent mold and other pathogens growing in them.

Water Consumption

Water consumption should be monitored carefully as the amount of water consumed directly affects weight gain and feed conversion. If water intake decreases, feed intake also decreases, and productivity declines. A decrease in water consumption may indicate an issue with water quality.

Other Water Usage

Availability of good quality water is also important for non-drinking purposes, such as cool cells used for evaporative cooling. The water lines supplying the cooling cells need to be clear and flow fully to allow the cells to work correctly. Evaporative cooling is addressed further in our next post on best practices for ventilation in ABF poultry houses.

Protect Birds From Pathogens and Biotoxins

To defend against waterborne pathogens, birds need a healthy intestinal environment that can mount an effective immune response and prevent pathogens and their biotoxins entering the circulatory system, causing disease. As well as health issues, pathogens can also cause morphological changes to the intestinal lining, decreasing the surface area available for nutrient absorption. Fortunately, natural alternatives to AGP are available to support a competent immune system, maintain intestinal integrity and promote performance.

Using high-quality water in poultry production systems is essential to keep equipment running smoothly and maintain bird health and performance. Amlan is dedicated to developing next-generation technology to help poultry producers keep birds healthy and maintain productivity for life. Download a helpful, printable guide that summarizes the above best practices here and keep checking our Education Center for other posts on our ABF production best practices series.

Varium®: An Effective Alternative to AGPs for Poultry Immunity and Intestinal Integrity

Computer-generated illustration of intestinal bacterial activity in poultry.

Protecting gut health, maximizing feed efficiency and increasing growth rates in poultry has traditionally been achieved with antibiotic growth promoters (AGPs). But with the rise of antibiotic-resistant bacteria and consumer demand for antibiotic-free (ABF) protein, the worldwide poultry industry is migrating toward ABF production systems. Poultry producers today need viable, profitable and natural alternatives to AGPs that can help maintain gut health, support efficient feed use and promote growth.

Varium® is a natural performance additive that enhances multiple aspects of the intestinal environment, creating production results consistent with those observed with AGP use. In the intestinal lumen, Varium reduces levels of pathogenic bacteria and their toxins, protecting the intestinal lining from attack. Varium also acts an enterocyte energy source, fostering healthy and strong enterocytes that can better absorb nutrients and support growth. Additionally, Varium stimulates the innate immune system to help birds naturally defend against pathogens. Continue reading to view the research demonstrating the beneficial effects Varium has on poultry immunity and intestinal integrity.

Improved Immune Competence

Birds with a healthy gut have a competent immune system that responds appropriately and is less susceptible to disease-causing bacteria and viruses. In a study conducted with Salmonella-challenged broilers at Imunova Análises Biológicas (Curitiba, Brazil), Varium helped restore immune competence and ultimately favored the development of appropriate defenses against the pathogen. The improved immune competence was demonstrated by the apparent prevention of cytotoxic T cell terminal activation (CD8+CD28 phenotype) which, when it occurs in large numbers, can render the immune system less responsive and competent in fighting against pathogen infections. Varium also restored major histocompatibility complex class II (MHC II) expression, essential for the stimulation of an antigen‑specific immune response, and increased monocyte phagocytic activity compared to the Salmonella-challenged control group. For further details of this study, contact Amlan (info@amlan.com).

Responsive to Immune System Stimuli

The ability of the immune system to prevent pathogens from establishing a successful infection is vital to keeping birds healthy and productive. The immune response to various stimuli was assessed in two Varium field trials by measuring the antibody titer from two common vaccines and assessing the prevalence of bacteria in the small intestines and digesta.

In a field trial conducted at a commercial farm in Vietnam, broilers were fed a basal diet and coccidiostat with either enramycin (at the manufacturer’s recommended dose) or Varium (0.1%) for the first 28 days. From day 29 to the end of study (either day 35 or 42), the control broilers were fed the basal diet only and the Varium group was fed the basal diet plus Varium (0.1%). Sub-samples from randomly selected birds were obtained and the data analyzed at Nong Lam University, Ho Chi Minh City.

In this trial, the infectious bronchiolitis virus (IBV) antibody titer of Varium-fed broilers was significantly increased on day 15 (P < 0.05 vs. antibiotic-fed control) and similar on day 35 to the antibiotic-fed control. Newcastle disease virus (NDV) titers were also similar on days 15 and 35 in the control and Varium groups. Antibody titers indicate the strength of the acquired immune response to vaccination. These results show that Varium can stimulate an antibody production response to vaccination that is the same as or better than broilers fed AGPs.

In another trial conducted at a university in Pakistan, broilers were fed either an AGP (zinc bacitracin, 0.01%) or Varium (0.10%) for 35 days. Varium fed birds had a higher (P < 0.05) concentration of the beneficial bacteria Lactobacilli and a lower concentration of the pathogenic bacteria Salmonella in the small intestine and digesta. This demonstrates that Varium in the diet was able to maintain a healthier intestinal microbiota. The antibody titer for NDV was also greater for Varium-fed broilers than control birds (Figure 1).

Figure 1: The Newcastle disease virus (NDV) antibody titer (by hemagglutination inhibition assay) was significantly higher (P < 0.05) in Varium-fed broilers than AGP-fed broilers on day 20 (14 days after first vaccination [intraocular and subcutaneous]) and day 35 (14 days after second vaccination [oral booster]). Different letters indicate significant differences (P < 0.05) between groups within day.

Improved Intestinal Integrity

Along with immune competence, the structure and functional integrity of the intestine is also key to reducing the risk of infection. A healthy intestinal tract and competent immune system improve the ability of the bird to block the invasion of pathogens into intestinal epithelial cells and the circulatory system.

In the Imunova Análises Biológicas study, use of a fluorescent marker demonstrated that on days 4 and 8, the increased intestinal permeability observed in the Salmonella-challenged control was mitigated with the addition of Varium to the diet (Figure 2). The reduced permeability confirmed that Varium helped maintain the structural and functional integrity of the intestinal barrier. Varium also effectively reduced excessive migration and infiltration of lymphocytes into the cecal wall, which helped dampen the inflammatory damage and improved intestinal integrity seen in Varium-treated broilers.

Figure 2: Intestinal integrity as measured by the passage of a marker. Salmonella infection resulted in increased passage of a marker from the intestine to blood on days 4 and 8 following bacterial challenge, indicating impaired mucosal integrity. Compared to the Salmonella-infected control, Varium effectively mitigated increased intestinal permeability on days 4 and 8 (P < 0.05 vs. infected control). Different letters indicate significant differences (P < 0.05) between groups within day.

Necrotic Enteritis Scores

The reduction in AGP use has triggered an increase in the occurrence of necrotic enteritis in poultry flocks. Necrotic enteritis is caused by Clostridium perfringens and can cause significant production losses. In the trials conducted in Pakistan and Vietnam, the intestinal lesion score was not different between the Varium and antibiotic-fed groups, indicating that Varium was able to reduce the occurrence of necrotic enteritis to the same extent as the AGP.

Figure 3: Necrotic enteritis lesion score (Day 35) was numerically lower in broilers fed Varium versus broilers fed AGPs.

Varium: Feed Efficiency for Poultry

These trials demonstrated that replacing AGPs in broiler diets with Varium can maintain the immune response and intestinal integrity observed with AGP use and can also potentially improve them. Varium also helped restore the immune response in pathogen-challenged broilers. The direct benefits of the immunity and intestinal integrity results in the field trials was confirmed with growth performance being similar or better than broilers fed AGP. For more information on how Varium improves productivity visit, amlan.com/varium.

Strategies for Producing Antibiotic-Free Poultry

Strategies for Producing Antibiotic-Free Poultry Infographic | Amlan International

As producing poultry meat that can be labelled antibiotic free (ABF) or No Antibiotics Ever (NAE) becomes more common and desirable, poultry producers are looking for ways to mitigate major poultry diseases in a safe, sustainable and profitable way.

At Amlan, we consult with poultry producers around the world. Those who are transitioning to ABF production are concerned about whether their breeder and grow-out operations can remain competitive, profitable and free from performance-robbing intestinal diseases such as necrotic enteritis. To be successful, a whole-production-system approach that factors in housing management, water quality and biosecurity is needed to maintain bird performance while managing profit margins.

Improved health of broilers starts with the breeder and hatchery

Since breeders can transfer intestinal microbes and immunity to their progeny, companies that are transitioning to ABF production are paying close attention to ensuring intestinal health is adequate in breeders and that vaccination programs are effective. Effective management means watching cross-contamination from the breeder program to the broiler program, including ensuring the hatched eggs are clean and not creating cross-contamination issues by fogging and cleaning too much.

Good litter management is another housing practice to not only get chicks off to a good start, but also to reduce disease challenges. Management practices will vary depending on many factors. In general, cleaning out hatcheries once per year is a good practice. Litter amendments can be used to reduce ammonia and bacterial challenges in-between clean-outs. We also find that removal of caked/wet litter along with windrowing or composting litter is beneficial between flocks.

Improve house environment and biosecurity

Proper environmental conditions are the foundations of effective ABF poultry production and can help cut down on disease issues. Environmental stress due to heat, cold, or very dry or very humid air can affect feed intake and intestinal motility, causing reduced digestibility. We recommend that producers ensure optimum temperature, air velocity and relative humidity according to the age, phase of production and size of the birds.

A large-scale poultry producer with which we have discussed ABF practices emphasizes downtime between flocks, whether or not it’s an ABF system. This producer recommends 14 days of rest before putting another flock in. Then, effective flock management helps reduce stress and disease. Reducing the density of the flock gives the birds more room and greater air circulation, which results in less litter moisture — all leading to lowered challenge. Further, good house ventilation is key for ABF programs to maintain litter moisture below 30 percent, and to minimize condensation and caking.

The most efficient production facilities also focus on nutrient uptake management. While controlling intestinal diseases is important, focusing on nutrient absorption is equally important. Inadequate nutrient absorption contributes to the severity of many diseases. Appropriate feed digestibility is key to broilers’ overall health and can help control microbes and resultant diseases.

The best biosecurity practices include bio-exclusion — limiting visitors, vehicles and equipment that visit other poultry farms. Also, implement bio-containment practices, such as isolating the houses and controlling the entry of insects, rodents, and wild birds and other animals to the houses. These are some of the practices that can help prevent the introduction of new infections in flocks. In a future Amlan blog post, we will deliver more details on these practices.

Feed and water management

Nutritionists know that a balanced diet and sufficient water consumption are essential to improve digestibility. For best results, producers tend to use high-quality feed and minimize drastic changes to the feed program (changing from corn to wheat, for example) within a generation of broilers. Some poultry operations recommend feeding larger and coarser particle sizes (800 to 1,000-micron grind size) while avoiding powdery or fine-textured feeds results in better enzyme release in the gut.

We’ve found that it’s also important to formulate the feed on a digestible amino acid basis and reduce crude protein levels to prevent an overload of Clostridium in the lower gut and the incidence of necrotic enteritis. Producers should also consider supplementing feed with exogenous enzymes and, to further strengthen their effect, additives such as phytases and xylanases.

Other producers say that, if allowed, adding animal protein meal to the diet helps lower costs and reduce excess potassium. They also provide a good mineral source and promote a better amino acid balance. If you go that route, poultry by-product meal, feather meal and poultry fat are good feed ingredients.

Finally, good water quality and management is critical. Adding acidified copper sulfate and hydrogen peroxide to the drinking water during challenging times, such as during the necrotic window, is also recommended.

Maintaining gut health and minimizing intestinal disruptions are key

Preventing coccidiosis and necrotic enteritis are normally the main concerns during ABF production. Without antibiotics and even ionophores, it’s more of a challenge to keep these diseases under control.

At Amlan, we talk a lot about the important role that the gut flora plays in supporting disease management and enhancing the immune system. In addition to a balanced diet and good housing conditions as described earlier, feed additives and minerals can help maintain a healthy microflora in all gut regions.

Certain formulated feed additives are designed to use different and (ideally) synergistic modes of action to achieve desired responses. These products are typically tested by a team of specialists to determine the optimal formulation, so growers don’t have to experiment. They include prebiotics, probiotics, enzymes, organic acids, minerals and other additives that can be used successfully to manage gut health instead of AGPs. Formulated feed additives that combine the right ingredients to replace one or more other additives and help birds grow efficiently are just what today’s broiler producers need.

Varium® is a patented feed additive used across the word in antibiotic-free poultry production to achieve similar outcomes as AGPs, often replacing one or more additional feed additives being used as alternatives to AGPs. Varium’s performance has been observed in multiple controlled studies and field trials and is helping commercial producers improve production efficiencies by improving feed conversion and weight gain and decreasing mortality.

It takes the right combination of best management practices to achieve a productive and profitable ABF poultry facility. We’re here to help provide you with the knowledge and technology to make a difference in your operation. Download a helpful, printable guide that summarizes the above best practices here, and check Amlan’s Education Center frequently for future posts on best production practices and natural feed additive programs that enhance intestinal health and improve efficiency in ABF poultry production.

 

X