Currently Viewing Posts Tagged Poultry

The Role of Quorum Sensing in Necrotic Enteritis Development

The fast onset of necrotic enteritis and the devastating production losses it inflicts make it one of the most challenging diseases for the poultry industry, particularly for antibiotic-free producers. Clostridium perfringens, the cause of necrotic enteritis, possesses a number of virulence factors that allow it to mount a fast, efficient attack on the host including potent toxins and cell-to-cell communication (quorum sensing). However, natural mineral-based products that can disrupt quorum sensing and reduce the virulence of C. perfringens are available.

The Pathogenesis of Necrotic Enteritis

C. perfringens is an anerobic, spore-forming pathogen found in the normal microbiota of poultry, as well as the poultry house. Necrotic enteritis occurs when predisposing conditions, such as a change in diet, immune status or intestinal pathophysiology, promote an overgrowth of C. perfringens. Coccidiosis can also increase the incidence of necrotic enteritis, as the damage that Eimeria spp. cause to intestinal epithelial cells promotes the invasion of C. perfringens (as well as other pathogens).

C. perfringens’ Rapid Infection Rate

C. perfringens is one of the fastest growing bacterial pathogens. Under optimal conditions it can replicate every 8 to 10 minutes — outgrowing other resident bacteria to achieve intestinal colonization.1 As well as a rapid growth rate, C. perfringens infection involves multiple steps, which likely occur simultaneously, including colonization, replication, nutrient procurement, evasion of host immune defenses, host tissue damage and transmission.2

Exotoxin Roles in Necrotic Enteritis Development

Multiple exotoxins can be produced by C. perfringens, including alpha-toxin and necrotic enteritis toxin B-like toxin (NetB). Alpha-toxin is cytotoxic to endothelial cells, red blood cells, white blood cells and platelets, while NetB toxin forms pores in cell membranes that allow electrolytes to rupture cells, causing cell death and necrotic lesions in the small intestinal mucosa.3 These two toxins are known to have a role in necrotic enteritis development.

C. perfringens Growth Depends on Host Nutrients

C. perfringens relies on nutrients from the host to live and multiply — a process which results in the destruction of host tissues (formation of necrotic lesions). C. perfringens lacks enzymes needed for amino acid biosynthesis and subsequent protein synthesis, so enzymes and toxins are released to degrade structural proteins from the host.4 The host amino acids and/or peptides are then taken in by C. perfringens for use in its own protein synthesis. 4

To produce energy, C. perfringens degrades large sugar compounds from the host and ferments them, producing gas that enhances the anerobic environment.4 C. perfringens also produces hyaluronidases that increase connective tissue permeability and help C. perfringens spread into deeper tissues.4

Quorum Sensing Controls Exotoxin and Enzyme Production

C. perfringens uses quorum sensing (cell-to-cell communication) to coordinate exotoxin and enzyme production to occur when its population reaches a density that supports the most efficient use of its metabolic resources.5 For example, to determine the optimum time to start producing NetB, the accessory gene regulator-like (Agr-like) quorum-sensing system sends out signals that are recognized by the VirR/VirS two-component regulatory system.5 Once the VirR/VirS system detects that the C. perfringens population has reached the threshold density, it switches on the expression of NetB and other virulence and related metabolism genes.2

Quorum Quenching Reduces Pathogen Virulence

Quorum quenching is an approach that can disrupt the quorum-sensing system of pathogenic bacteria, preventing cell-to-cell communication and the expression of quorum-sensing-controlled genes that produce toxins and other virulence factors. Additionally, quorum-quenching products should reduce the chance of antibiotic resistance, since they are modifying bacteria behavior rather than killing them.

Natural Quorum-Sensing Control

One product that has displayed quorum-quenching properties is the mineral-based feed additive Calibrin®-Z (available in select international markets). This all-natural single-ingredient product binds bacterial pathogens and the toxins they produce, as well as multiple mycotoxins, to help protect the intestinal barrier against enteric disease. Other natural mineral-based products can also help manage necrotic enteritis; read this article to learn more.

An in vitro study found that Calibrin-Z separated out quorum-sensing molecules by adsorption or catalytically broke them down into small fragments. By reducing the concentration of quorum-sensing biochemicals, Calibrin-Z can potentially disrupt the ability of pathogenic bacteria (including C. perfringens) to produce toxins, since quorum sensing controls this function. Calibrin-Z was also shown to effectively bind alpha-toxin and NetB toxin, further reducing the virulence of C. perfringens.

 

The global reduction in the use of in-feed antibiotics has compelled producers to rely on other management methods to maintain a healthy intestinal environment in poultry and reduce the risk of necrotic enteritis. The use of best-practice management strategies and inclusion of mineral-based feed additives that reduce the virulence of C. perfringens can assist in promoting intestinal health and maximizing production efficiency. To learn more about necrotic enteritis and natural mineral-based methods to control it, contact your local Amlan representative.

 

References

  1. Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. 2018;7:141.
  2. Prescott JF, Parreira VR, Mehdizadeh Gohari I, Lepp D, Gong J. The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathol. 2016;45:288–94.
  3. Chi, F. A Viable Adjunct or Alternative to Antibiotics: Meta-Analysis of Broiler Research Shows Natural Growth Promoter Delivers Feed Efficiency Equal to Antibiotics. Amlan International.
  4. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A. 2002;99:996–1001.
  5. Yu Q, Lepp D, Mehdizadeh Gohari I, Wu T, Zhou H, Yin X, Yu H, Prescott JF, Nie SP, Xie MY, Gong J. The Agr-Like Quorum Sensing System Is Required for Pathogenesis of Necrotic Enteritis Caused by Clostridium perfringens in Poultry. Infect Immun. 2017;85:e00975-16.

 

Rapidly Adsorb Aflatoxins and Improve Poultry Performance with Calibrin-A

Calibrin-A White Broilers

Mitigating the effects of mycotoxin-contaminated feed is a goal of every poultry producer in order to keep birds healthy and reduce the negative effects of mycotoxicosis on performance. Aflatoxin is a common threat to poultry productivity, targeting and damaging the liver and causing mortality in severe cases. Subclinical cases can reduce feed intake, weight gain and efficiency, which negatively impact the cost of production and, ultimately, profits.

Aflatoxin is a polar or hydrophilic (water-loving) mycotoxin, which means it and other polar mycotoxins, like ergotamine, ergovaline and cyclopiazonic acid (CPA), are attracted to hydrophilic surfaces. Calibrin®-A (available in select international markets) is a mineral-based feed additive that rapidly adsorbs these polar mycotoxins due to its hydrophilic binding sites. If mycotoxin diagnostic tests (e.g., BioInsights) detect feed is contaminated with polar mycotoxins, Calibrin-A is an effective solution for reducing performance loss.

The Calibrin-A Difference

Calibrin-A contains one ingredient — our selectively-source calcium montmorillonite with opal CT lepispheres. We select our calcium montmorillonite from a specific location within our mine to ensure product consistency, quality and reliability for customers. We’re very specific about where we source our mineral, because of its natural physical and chemical properties. We also use proprietary mineral processing methods that are tailored for each product. These unique properties are what create the difference between Calibrin-A and other clay binders in the market. Calibrin-A naturally adsorbs polar mycotoxins and is designed to have a high particle count and increased access to hydrophilic binding sites. The combination of natural mineral characteristics and processing techniques creates a highly effective, fast-acting feed additive for binding polar mycotoxins.

Rapid Polar Mycotoxin Adsorption Is Key

Eliminating the fast uptake of mycotoxins into the digestive system is key to preventing the negative health and performance effects of mycotoxicosis. Mycotoxins quickly metabolize in the intestines and liver and can circulate in the blood for days or weeks. While certain toxins enter the body more quickly than others, the negative effects consistently result in decreased performance and unrealized economic potential. Calibrin-A rapidly adsorbs polar mycotoxins, reducing their bioavailability in the body and mitigating performance loss (Figure 1).

Figure 1: Calibrin-A rapidly adsorbs aflatoxin. Source: Trilogy Analytical Laboratory, USA.

Calibrin-A Improves Performance of Aflatoxin-Fed Broilers

The impact rapid aflatoxin adsorption by Calibrin-A has on bird productivity was shown in two broiler studies. In research conducted at the University of Missouri (Columbia, MO), Calibrin-A abated the detrimental effects of aflatoxin-contaminated feed on broiler health and performance. The study compared a control diet to diets containing 2 ppm of aflatoxin, with or without 0.5% Calibrin-A, fed to day-old Ross 308 chicks for 21 days.

As expected, aflatoxin in the feed caused decreased (P < 0.05) feed intake, weight gain and feed efficiency, and increased (P > 0.05) relative liver weight compared to control birds. The liver is the main target of aflatoxin if it enters the body from the intestine. Aflatoxin will cause the liver to swell and it can become “fatty” with a yellow appearance. The swollen liver and decreased weight gain causes increased relative liver weight.

Adding Calibrin‑A to the diet of birds fed aflatoxin improved weight gain and feed efficiency (Figure 2), and reduced the mycotoxin-induced increase in relative liver weight (Figure 3). Mortality rate of the control and Calibrin-A-fed birds (2.5%) was lower than the aflatoxin-fed birds (10%).

Figure 2: Calibrin-A improved weight gain and feed efficiency in broilers fed aflatoxin-contaminated feed (P < 0.05).

Figure 3: Calibrin-A reduced the mycotoxin-induced increase in relative liver weight (P > 0.05).

In a study conducted at SAMITEC (Santa Maria, Brazil), four groups of male broiler chicks (6 reps x 10 chicks each) received a diet with or without aflatoxin (2.8 ppm) and with or without 0.5% Calibrin-A (CON, AFL, CON + Calibrin-A, AFL + Calibrin-A). Calibrin-A improved (P < 0.05) the feed intake and body weight of birds fed aflatoxin (Figures 4 and 5) and reduced (P < 0.05) the average liver weight of birds fed aflatoxin (Figure 6). Additionally, adding Calibrin-A to the control diet (no aflatoxin) at 10 times the recommended dose had no negative effects on growth performance (Figures 4 and 5), indicating that Calibrin-A does not significantly interfere with nutrient use.

In order to achieve statistical significance between the challenged and non-challenged birds, a much higher concentration of aflatoxin was used in both studies than would typically be seen in poultry diets. Because birds were challenged with a high amount of aflatoxin, Calibrin-A was also included at a higher dose than typically recommended. The ratio of Calibrin-A to aflatoxin in the feed was 2500:1 (5000 ppm Calibrin-A and 2 ppm aflatoxin) for the University of Missouri study, for example, which is equivalent to the recommended inclusion rate of Calibrin-A (500 ppm) and 0.2 ppm of aflatoxin in the feed. This amount of aflatoxin is still higher than the concentration typically found in poultry feed.

Figure 4: Calibrin-A increased feed intake in birds fed aflatoxin (P < 0.05).

Figure 5: Calibrin-A increased the average weight of birds fed aflatoxin to a weight similar to control birds (P < 0.05).

Figure 6: Calibrin-A decreased the average liver weight of birds fed aflatoxin (P < 0.05).

These studies demonstrate the performance and health benefits of feeding Calibrin-A to rapidly adsorb polar mycotoxins like aflatoxin. Single-ingredient, mineral-based Calibrin-A is an effective solution to mitigating the risk of mycotoxicosis from aflatoxin-contaminated feed. To learn more about Calibrin-A or to try Calibrin-A for yourself, contact your local sales representative.

 

 

Poultry Science Study Shows NeutraPath® Targets Salmonella Isolate Using Multiple Methods

NeutraPath® logo with packaged poultry in background.

Source: Xue H, Wang D, Hargis BM, Tellez-Isaias G. Research Note: Virulence gene downregulation and reduced intestinal colonization of Salmonella enterica serovar Typhimurium PHL2020 isolate in broilers by a natural antimicrobial (NeutraPath™). Poultry Science. 2022 Mar 7:101822. https://doi.org/10.1016/j.psj.2022.101822.

Reducing intestinal Salmonella colonization in poultry is a key strategy in controlling Salmonella contamination of poultry products and, in turn, lowering the incidence of salmonellosis in people. Subtherapeutic levels of antibiotic growth promoters (AGP) can help control enteric pathogens like Salmonella, but restrictions in AGP use have created the need for antibiotic-free methods of reducing enteric pathogens in poultry.

A natural mineral-based feed additive that has previously shown action against Salmonella prevalence is NeutraPath® — a select blend of essential oils, fatty acids and a thermally processed enterosorbent mineral. A recent Poultry Science study investigated the antimicrobial effects of NeutraPath against Salmonella enterica serovar Typhimurium strain PHL2020 (ST-PHL2020) and the effects of NeutraPath on ST-PHL2020 virulence gene expression.

The study showed that NeutraPath exhibited a potent antimicrobial effect against ST-PHL2020 and reduced its intestinal colonization. NeutraPath also modulated ST-PHL2020 virulence network development by downregulating mRNA expression of key virulence genes and blocking expression of downstream effectors involved in Salmonella invasion. Together, the results show that NeutraPath has the potential to reduce ST-PHL2020 intestinal colonization in broilers and downregulate key ST-PHL2020 virulence genes.

Read the full article

Poultry Producers’ Important Role in Reducing the Global Salmonellosis Challenge

Microscopic salmonella with Varium logo text graphic.

Salmonella is one of the most prevalent foodborne zoonotic pathogens worldwide. However, by using strategies that reduce the contamination of poultry products at the farm and processing plant levels, poultry producers and processors can play an important role in reducing the incidence of salmonellosis and the emergence of antimicrobial-resistant Salmonella strains.

Poultry-Related Salmonellosis

Salmonellosis is a common human foodborne illness and one of four key global causes of diarrheal diseases in people according to the World Health Organization. Poultry-related salmonellosis is typically caused by Salmonella spp. passing from poultry to people through contaminated eggs and meat. Poultry are often asymptomatic carriers, and their intestinal tracts serve as pathogen reservoirs, potentially leading to contamination of food products.

Salmonella Transmission

To enter the human food chain, Salmonella must first colonize the bird’s intestinal tract. After colonization, Salmonella can spread via horizontal transmission (bird to bird), contaminating the environment and the carcass during slaughter. Salmonella colonization of the cecum can also result in vertical transmission (parent to progeny) through contamination of the yolk, albumen and eggshell membranes.

Reducing Salmonella Contamination

Salmonella can contaminate meat products during processing, causing contaminated poultry carcasses to serve as a source of infection in consumers. Innovative technology provides processors with methods to reduce contamination at the poultry plant; however, control of Salmonella at the farm level is also an important step in reducing the risk of salmonellosis in people.

Antimicrobial-Resistant Salmonella Strains

Antimicrobial-resistant pathogens, which include strains of Salmonella, are a major concern for public health care worldwide. The U.S. Centers for Disease Control and Prevention (CDC) reported that over a three-year period, an average of 16% of all nontyphoidal Salmonella were resistant to at least one essential antibiotic.

The concern over antimicrobial resistance (in all pathogens, not just Salmonella) has led to a global effort to reduce the use of in-feed antibiotics in poultry production in an effort to slow the emergence of antimicrobial-resistant pathogens. This presents a challenge for poultry producers since they are still being urged to control Salmonella in the poultry barn to reduce contamination of meat during processing.

Reduce Salmonella with a Non-Pharmaceutical Solution

A natural feed additive that producers can use to help limit Salmonella in poultry is Varium® — a patented mineral-based product sold in Amlan’s international markets. Varium enhances multiple aspects of the intestinal environment, creating production results consistent with those observed with antibiotic growth promoter use. The patented technology in Varium includes a synergistic formulation of three ingredients with distinct modes of action: Varium reduces levels of pathogenic bacteria and their toxins in the intestinal lumen, acts as an enterocyte energy source, and stimulates the intestinal immune system to help birds naturally defend against pathogens.

Varium has been shown to agglutinate (adsorb) Salmonella spp., which can help prevent colonization of the intestinal wall and subsequent proliferation (Figure 1).

First Salmonella Close-Up Stage 8 Info Graphic | Amlan International
Second Salmonella Close-Up Stage 8 Info Graphic | Amlan International
Figure 1: Agglutination (adsorption) of Salmonella spp. by Varium. The scanning electron microscopy images were taken at 4 μ (top) and 20 μ (bottom). Images courtesy of the University of Georgia, Athens, GA.

Supporting the in vitro agglutination results, Varium also reduced Salmonella colonization in vivo in a 28-day broiler trial conducted at Imunova Análises Biológicas (Curitiba, Brazil). In this study, broilers challenged with Salmonella enterica serovar Enteritidis and supplemented with Varium had a 5-log reduction in cecal Salmonella levels on day 14, compared to the challenged control, and reduced overall Salmonella levels (Figure 2).

Salmonella and Public Health Concerns info graphic.
Figure 2. Compared to the challenged control, treatment with Varium rapidly reduced the bacterial load in the cecum as indicated by the Salmonella most probable number (MPN). Different letters indicate a significant difference between groups on day 14, and a main treatment effect of P = 0.0526 was also observed.

Salmonellosis and antimicrobial-resistant Salmonella strains are important global public health concerns. However, with the assistance of natural mineral-based feed additives like Varium, poultry producers can help reduce the Salmonella risks for consumers at the farming stage. To learn more about Varium, click here.

Consumer Demand Driving Natural Feed Solutions

Poultry barn with Amlan logo text graphic.

Source: Amie Simpson, Brownfield Ag News, January 28, 2022

“Increasing regulation and strong consumer demand are creating a growing market for natural animal protein production solutions,” commented Dr. Wade Robey, our VP of Marketing and Product Development, in a recent interview with Amie Simpson from Brownfield Ag News. Wade also discussed Amlan’s introduction of natural mineral-based feed additives into the US market and the growth opportunities this presents for Amlan in 2022. Read more here.

Managing Gut Health for Antibiotic-Free Chicken

Fred Kao photo with chicken barn background graphic.

Source: Red River Farm Network, January 28, 2022

An increasing market sector around the world. That’s the prediction for the no-antibiotic-ever market provided by Fred Kao, Vice President of Global Sales for Amlan, during his recent interview with Red River Farm Network. Fred also discussed the competitiveness of Amlan’s mineral as a stand-alone product. Read the full story here.

Exploring Necrotic Enteritis: Cause, Effects and Solutions

Computer-generated illustration of necrotic enteritis.

Necrotic enteritis is a common infectious disease that costs the poultry industry billions of dollars each year. With more and more poultry production systems moving toward the global objective of reduced in-feed use of antibiotics for growth promotion, maintaining a healthy intestinal environment now relies more heavily on other management methods to reduce the risk of necrotic enteritis development. Keep reading to learn more about the origins of necrotic enteritis, the relationship between necrotic enteritis and coccidiosis, and management of the disease risk in ABF production systems.

C. perfringens: The Cause of Necrotic Enteritis

Necrotic enteritis is caused by Clostridium perfringens types A and C: gram-positive, spore-forming anerobic bacteria. C. perfringens can be found throughout the poultry house environment and has spores which, under the right environmental conditions, can survive for long periods outside the bird. The normal microbiota of the bird contains C. perfringens, so its presence alone doesn’t necessarily indicate an issue. Instead, disease occurs when predisposing conditions in the bird cause overgrowth of the pathogen. There are multiple factors that can contribute to C. perfringens overgrowth including diet changes, immune status and stress, intestinal pathophysiology and concurrent infection with coccidiosis.

Multiple exotoxins can be produced by C. perfringens, including alpha-toxin and necrotic enteritis toxin B-like toxin (NetB). Alpha-toxin is cytotoxic to endothelial cells, red blood cells, white blood cells and platelets, whereas NetB toxin forms pores in cell membranes that allows electrolytes to rupture cells, causing cell death and necrotic lesions in the small intestinal mucosa. These two toxins are known to have a role in necrotic enteritis development.

Impaired Nutrient Adsorption

In healthy birds, the epithelium and mucus layer of the intestine form a selective barrier between internal tissues and the external environment (the intestinal lumen). The natural barrier allows nutrients through the intestinal wall but not pathogens and their biotoxins. When there is an overgrowth of C. perfringens, there is a breakdown of the defensive barrier. The damage to the intestinal wall hinders nutrient digestion and absorption and can allow toxins to enter the circulatory system.

Necrotic enteritis can present as either clinical or subclinical disease. The clinical form is characterized by high mortality, whereas subclinical disease causes decreased weight gain and increased feed conversion ratio (FCR). The increased FCR is due to the reduced nutrient digestibility and adsorption, resulting in compensatory feed intake.

Coccidiosis Can Increase Necrotic Enteritis Incidence

Coccidiosis is another common disease in poultry that causes a significant negative economic impact on production. It is an enteric disease caused by parasitic protozoa in the Eimeria genus. Part of the Eimeria life cycle includes invading intestinal epithelial cells, damaging the intestinal wall barrier. The damage that coccidia cause to intestinal epithelial cells promotes invasion by C. perfringens (as well as other pathogens), increasing the incidence of necrotic enteritis.

Necrotic Enteritis in Antibiotic-Free Production

Managing necrotic enteritis in an ABF production system requires detailed strategies including the use of vaccinations, diagnostic tools and natural feed additives. In some production systems, ionophores used to control coccidiosis may also be eliminated, which further heightens the importance of other management practices that keep birds free of diseases like coccidiosis and necrotic enteritis.

Management practices, such as biosecurity, sanitation, water quality and air quality, also require increased planning and monitoring in ABF systems. Reduced ventilation, increased litter moisture and poor husbandry can increase the incidence of necrotic enteritis. The quality and sanitation of eggs in the hatchery also needs to be managed well in ABF systems, so that birds have a healthy start to life.

Necrotic Enteritis Control Solutions

Along with management best practices, natural feed additives such as Varium® and Calibrin®-Z are available to help reduce the incidence of necrotic enteritis. Varium, a natural patented mineral-based feed formulation, can reduce challenges from pathogenic bacteria and their toxins, strengthen the intestinal barrier and activate the innate immune system to naturally defend against disease. In high challenge environments, Calibrin-Z, a broad spectrum biotoxin control feed additive, can be used on top of Varium to reduce the level of pathogens in the intestines that cause mortality, wet droppings, reduced feed efficiency and damage the integrity of the intestine.

Necrotic enteritis is a challenging disease for poultry producers, particularly those using an ABF production system. However, with best practice management strategies and inclusion of feed additives that promote intestinal health and function, poultry flock health can be improved, thereby reducing the risk of disease and maximizing production efficiency. To learn more about necrotic enteritis, keep checking the Education Center for other posts in the necrotic enteritis series.

Reference

Chi, F. A Viable Adjunct or Alternative to Antibiotics: Meta-Analysis of Broiler Research Shows Natural Growth Promoter Delivers Feed Efficiency Equal to Antibiotics, Amlan International. https://amlan.com/product-category/feed-efficiency/

ABF Poultry Production Best Practice Series: Water Quality

Left side of a chicken's head with infographic.

In poultry production, water is considered the most important nutrient by far, yet water quality is often overlooked. Broilers typically consume at least 1.5 pounds more water than they eat in feed, so it’s important to have water that is low in microbial contamination with acceptable mineral levels. Monitoring water quality is particularly important in antibiotic-free (ABF) production systems to keep birds as healthy and profitable as possible. Here, we take a closer look at what our industry experts consider water quality best practices for ABF poultry producers, as part of our series on strategies for producing antibiotic-free poultry.

Testing Water Quality

Samples should be collected regularly to assess water quality, as the status can often change. Our industry experts recommend testing water at least annually to determine if is safe for birds to drink and if there are any issues that need correcting. Water quality should be assessed regardless of the source (i.e., municipal, well, pond), as even city water could have issues that can affect bird performance. Both the microbial contamination (e.g., E. coli) and mineral content (e.g., iron and sodium) of the water sample should be tested.

Microbial Contamination

Water can be a vector for bacteria and other pathogens, leading to significant health issues and production losses. A poultry house water line provides ideal growing conditions for pathogens as the water is often nutrient rich and in a warm environment. The risk of microbial contamination can also increase if flood water enters ponds or wells. Wild geese and ducks could also be a source of pathogens, if the water supply is from surface water (a pond).

Microbial contamination can lead to the formation of biofilm (slime) on the surface. Biofilm is an aggregate of microorganisms connected by an extracellular matrix that is attached to a surface (e.g., pipes and storage containers). As well as a health issue, biofilm can also block nipples and reduce water flow.

Mineral Composition

Excessive mineral content, particularly sodium and iron, can be an issue with some water sources. Too much sodium can cause flushing in the birds and iron can form deposits and clog the water lines. Hardness of the water (calcium and magnesium concentration) can also cause scale to build up in the lines and cause issues such as leaking nipples. Water leaking onto the litter can create further problems such as increased ammonia production.

If minerals levels are high, nutritionists may be able to formulate for mineral imbalances. However, this is usually more expensive than treating the water, particularly for large production companies where producing a specialty diet for a single location is not economically feasible. Sand filters could be used to remove some of the iron, however reverse osmosis or a larger filtration system may be needed for removing other minerals.

Cleaning Water Lines

Water lines should be flushed regularly, particularly after using water-based supplements. The lines should also be thoroughly cleaned between flocks to remove biofilm and scale buildup. Typically, hydrogen peroxide or chlorine-based products are used. The selected products should be appropriate for the application and the manufacturer’s directions followed to ensure adequate cleaning and to prevent damage to the water lines. After cleaning, the lines should be flushed well. Water storage tanks should also be cleaned regularly to prevent mold and other pathogens growing in them.

Water Consumption

Water consumption should be monitored carefully as the amount of water consumed directly affects weight gain and feed conversion. If water intake decreases, feed intake also decreases, and productivity declines. A decrease in water consumption may indicate an issue with water quality.

Other Water Usage

Availability of good quality water is also important for non-drinking purposes, such as cool cells used for evaporative cooling. The water lines supplying the cooling cells need to be clear and flow fully to allow the cells to work correctly. Evaporative cooling is addressed further in our next post on best practices for ventilation in ABF poultry houses.

Protect Birds From Pathogens and Biotoxins

To defend against waterborne pathogens, birds need a healthy intestinal environment that can mount an effective immune response and prevent pathogens and their biotoxins entering the circulatory system, causing disease. As well as health issues, pathogens can also cause morphological changes to the intestinal lining, decreasing the surface area available for nutrient absorption. Fortunately, natural alternatives to AGP are available to support a competent immune system, maintain intestinal integrity and promote performance.

Using high-quality water in poultry production systems is essential to keep equipment running smoothly and maintain bird health and performance. Amlan is dedicated to developing next-generation technology to help poultry producers keep birds healthy and maintain productivity for life. Download a helpful, printable guide that summarizes the above best practices here and keep checking our Education Center for other posts on our ABF production best practices series.

Varium®: An Effective Alternative to AGPs for Poultry Immunity and Intestinal Integrity

Computer-generated illustration of intestinal bacterial activity in poultry.

Protecting gut health, maximizing feed efficiency and increasing growth rates in poultry has traditionally been achieved with antibiotic growth promoters (AGPs). But with the rise of antibiotic-resistant bacteria and consumer demand for antibiotic-free (ABF) protein, the worldwide poultry industry is migrating toward ABF production systems. Poultry producers today need viable, profitable and natural alternatives to AGPs that can help maintain gut health, support efficient feed use and promote growth.

Varium® is a natural performance additive that enhances multiple aspects of the intestinal environment, creating production results consistent with those observed with AGP use. In the intestinal lumen, Varium reduces levels of pathogenic bacteria and their toxins, protecting the intestinal lining from attack. Varium also acts an enterocyte energy source, fostering healthy and strong enterocytes that can better absorb nutrients and support growth. Additionally, Varium stimulates the innate immune system to help birds naturally defend against pathogens. Continue reading to view the research demonstrating the beneficial effects Varium has on poultry immunity and intestinal integrity.

Improved Immune Competence

Birds with a healthy gut have a competent immune system that responds appropriately and is less susceptible to disease-causing bacteria and viruses. In a study conducted with Salmonella-challenged broilers at Imunova Análises Biológicas (Curitiba, Brazil), Varium helped restore immune competence and ultimately favored the development of appropriate defenses against the pathogen. The improved immune competence was demonstrated by the apparent prevention of cytotoxic T cell terminal activation (CD8+CD28 phenotype) which, when it occurs in large numbers, can render the immune system less responsive and competent in fighting against pathogen infections. Varium also restored major histocompatibility complex class II (MHC II) expression, essential for the stimulation of an antigen‑specific immune response, and increased monocyte phagocytic activity compared to the Salmonella-challenged control group. For further details of this study, contact Amlan (info@amlan.com).

Responsive to Immune System Stimuli

The ability of the immune system to prevent pathogens from establishing a successful infection is vital to keeping birds healthy and productive. The immune response to various stimuli was assessed in two Varium field trials by measuring the antibody titer from two common vaccines and assessing the prevalence of bacteria in the small intestines and digesta.

In a field trial conducted at a commercial farm in Vietnam, broilers were fed a basal diet and coccidiostat with either enramycin (at the manufacturer’s recommended dose) or Varium (0.1%) for the first 28 days. From day 29 to the end of study (either day 35 or 42), the control broilers were fed the basal diet only and the Varium group was fed the basal diet plus Varium (0.1%). Sub-samples from randomly selected birds were obtained and the data analyzed at Nong Lam University, Ho Chi Minh City.

In this trial, the infectious bronchiolitis virus (IBV) antibody titer of Varium-fed broilers was significantly increased on day 15 (P < 0.05 vs. antibiotic-fed control) and similar on day 35 to the antibiotic-fed control. Newcastle disease virus (NDV) titers were also similar on days 15 and 35 in the control and Varium groups. Antibody titers indicate the strength of the acquired immune response to vaccination. These results show that Varium can stimulate an antibody production response to vaccination that is the same as or better than broilers fed AGPs.

In another trial conducted at a university in Pakistan, broilers were fed either an AGP (zinc bacitracin, 0.01%) or Varium (0.10%) for 35 days. Varium fed birds had a higher (P < 0.05) concentration of the beneficial bacteria Lactobacilli and a lower concentration of the pathogenic bacteria Salmonella in the small intestine and digesta. This demonstrates that Varium in the diet was able to maintain a healthier intestinal microbiota. The antibody titer for NDV was also greater for Varium-fed broilers than control birds (Figure 1).

Figure 1: The Newcastle disease virus (NDV) antibody titer (by hemagglutination inhibition assay) was significantly higher (P < 0.05) in Varium-fed broilers than AGP-fed broilers on day 20 (14 days after first vaccination [intraocular and subcutaneous]) and day 35 (14 days after second vaccination [oral booster]). Different letters indicate significant differences (P < 0.05) between groups within day.

Improved Intestinal Integrity

Along with immune competence, the structure and functional integrity of the intestine is also key to reducing the risk of infection. A healthy intestinal tract and competent immune system improve the ability of the bird to block the invasion of pathogens into intestinal epithelial cells and the circulatory system.

In the Imunova Análises Biológicas study, use of a fluorescent marker demonstrated that on days 4 and 8, the increased intestinal permeability observed in the Salmonella-challenged control was mitigated with the addition of Varium to the diet (Figure 2). The reduced permeability confirmed that Varium helped maintain the structural and functional integrity of the intestinal barrier. Varium also effectively reduced excessive migration and infiltration of lymphocytes into the cecal wall, which helped dampen the inflammatory damage and improved intestinal integrity seen in Varium-treated broilers.

Figure 2: Intestinal integrity as measured by the passage of a marker. Salmonella infection resulted in increased passage of a marker from the intestine to blood on days 4 and 8 following bacterial challenge, indicating impaired mucosal integrity. Compared to the Salmonella-infected control, Varium effectively mitigated increased intestinal permeability on days 4 and 8 (P < 0.05 vs. infected control). Different letters indicate significant differences (P < 0.05) between groups within day.

Necrotic Enteritis Scores

The reduction in AGP use has triggered an increase in the occurrence of necrotic enteritis in poultry flocks. Necrotic enteritis is caused by Clostridium perfringens and can cause significant production losses. In the trials conducted in Pakistan and Vietnam, the intestinal lesion score was not different between the Varium and antibiotic-fed groups, indicating that Varium was able to reduce the occurrence of necrotic enteritis to the same extent as the AGP.

Figure 3: Necrotic enteritis lesion score (Day 35) was numerically lower in broilers fed Varium versus broilers fed AGPs.

Varium: Feed Efficiency for Poultry

These trials demonstrated that replacing AGPs in broiler diets with Varium can maintain the immune response and intestinal integrity observed with AGP use and can also potentially improve them. Varium also helped restore the immune response in pathogen-challenged broilers. The direct benefits of the immunity and intestinal integrity results in the field trials was confirmed with growth performance being similar or better than broilers fed AGP. For more information on how Varium improves productivity visit, amlan.com/varium.

Strategies for Producing Antibiotic-Free Poultry

Strategies for Producing Antibiotic-Free Poultry Infographic | Amlan International

As producing poultry meat that can be labelled antibiotic free (ABF) or No Antibiotics Ever (NAE) becomes more common and desirable, poultry producers are looking for ways to mitigate major poultry diseases in a safe, sustainable and profitable way.

At Amlan, we consult with poultry producers around the world. Those who are transitioning to ABF production are concerned about whether their breeder and grow-out operations can remain competitive, profitable and free from performance-robbing intestinal diseases such as necrotic enteritis. To be successful, a whole-production-system approach that factors in housing management, water quality and biosecurity is needed to maintain bird performance while managing profit margins.

Improved health of broilers starts with the breeder and hatchery

Since breeders can transfer intestinal microbes and immunity to their progeny, companies that are transitioning to ABF production are paying close attention to ensuring intestinal health is adequate in breeders and that vaccination programs are effective. Effective management means watching cross-contamination from the breeder program to the broiler program, including ensuring the hatched eggs are clean and not creating cross-contamination issues by fogging and cleaning too much.

Good litter management is another housing practice to not only get chicks off to a good start, but also to reduce disease challenges. Management practices will vary depending on many factors. In general, cleaning out hatcheries once per year is a good practice. Litter amendments can be used to reduce ammonia and bacterial challenges in-between clean-outs. We also find that removal of caked/wet litter along with windrowing or composting litter is beneficial between flocks.

Improve house environment and biosecurity

Proper environmental conditions are the foundations of effective ABF poultry production and can help cut down on disease issues. Environmental stress due to heat, cold, or very dry or very humid air can affect feed intake and intestinal motility, causing reduced digestibility. We recommend that producers ensure optimum temperature, air velocity and relative humidity according to the age, phase of production and size of the birds.

A large-scale poultry producer with which we have discussed ABF practices emphasizes downtime between flocks, whether or not it’s an ABF system. This producer recommends 14 days of rest before putting another flock in. Then, effective flock management helps reduce stress and disease. Reducing the density of the flock gives the birds more room and greater air circulation, which results in less litter moisture — all leading to lowered challenge. Further, good house ventilation is key for ABF programs to maintain litter moisture below 30 percent, and to minimize condensation and caking.

The most efficient production facilities also focus on nutrient uptake management. While controlling intestinal diseases is important, focusing on nutrient absorption is equally important. Inadequate nutrient absorption contributes to the severity of many diseases. Appropriate feed digestibility is key to broilers’ overall health and can help control microbes and resultant diseases.

The best biosecurity practices include bio-exclusion — limiting visitors, vehicles and equipment that visit other poultry farms. Also, implement bio-containment practices, such as isolating the houses and controlling the entry of insects, rodents, and wild birds and other animals to the houses. These are some of the practices that can help prevent the introduction of new infections in flocks. In a future Amlan blog post, we will deliver more details on these practices.

Feed and water management

Nutritionists know that a balanced diet and sufficient water consumption are essential to improve digestibility. For best results, producers tend to use high-quality feed and minimize drastic changes to the feed program (changing from corn to wheat, for example) within a generation of broilers. Some poultry operations recommend feeding larger and coarser particle sizes (800 to 1,000-micron grind size) while avoiding powdery or fine-textured feeds results in better enzyme release in the gut.

We’ve found that it’s also important to formulate the feed on a digestible amino acid basis and reduce crude protein levels to prevent an overload of Clostridium in the lower gut and the incidence of necrotic enteritis. Producers should also consider supplementing feed with exogenous enzymes and, to further strengthen their effect, additives such as phytases and xylanases.

Other producers say that, if allowed, adding animal protein meal to the diet helps lower costs and reduce excess potassium. They also provide a good mineral source and promote a better amino acid balance. If you go that route, poultry by-product meal, feather meal and poultry fat are good feed ingredients.

Finally, good water quality and management is critical. Adding acidified copper sulfate and hydrogen peroxide to the drinking water during challenging times, such as during the necrotic window, is also recommended.

Maintaining gut health and minimizing intestinal disruptions are key

Preventing coccidiosis and necrotic enteritis are normally the main concerns during ABF production. Without antibiotics and even ionophores, it’s more of a challenge to keep these diseases under control.

At Amlan, we talk a lot about the important role that the gut flora plays in supporting disease management and enhancing the immune system. In addition to a balanced diet and good housing conditions as described earlier, feed additives and minerals can help maintain a healthy microflora in all gut regions.

Certain formulated feed additives are designed to use different and (ideally) synergistic modes of action to achieve desired responses. These products are typically tested by a team of specialists to determine the optimal formulation, so growers don’t have to experiment. They include prebiotics, probiotics, enzymes, organic acids, minerals and other additives that can be used successfully to manage gut health instead of AGPs. Formulated feed additives that combine the right ingredients to replace one or more other additives and help birds grow efficiently are just what today’s broiler producers need.

Varium® is a patented feed additive used across the word in antibiotic-free poultry production to achieve similar outcomes as AGPs, often replacing one or more additional feed additives being used as alternatives to AGPs. Varium’s performance has been observed in multiple controlled studies and field trials and is helping commercial producers improve production efficiencies by improving feed conversion and weight gain and decreasing mortality.

It takes the right combination of best management practices to achieve a productive and profitable ABF poultry facility. We’re here to help provide you with the knowledge and technology to make a difference in your operation. Download a helpful, printable guide that summarizes the above best practices here, and check Amlan’s Education Center frequently for future posts on best production practices and natural feed additive programs that enhance intestinal health and improve efficiency in ABF poultry production.

 

X